T-79.159 Cryptography and Data Security

Lecture 5: Public Key Algorithms

Helger Lipmaa
Helsinki University of Technology
helger@tcs.hut.fi

Recap: what we have done

- First lecture: general overview
- Second lecture: secret-key cryptography
- Third lecture: Modes of operation
- Fourth lecture: Hash functions
 Lectures 2–4 are all about secret-key cryptography!
- Today: Public key algorithms

Problems of symmetric model (1/3)

- Alice and Bob need to share a key
 - * distributed over a private channel
 - * say, when they meet in a pub
- Private channels are very expensive
 - * especially in Finland

Problems of symmetric model (2/3)

Huge number of keys when scaling:

- n participants who want to communicate pairwise secretly
- Every pair needs a secret key, there are $\binom{n}{2} = \frac{n^2 n}{2}$ pairs
- Thus, $\frac{n^2-n}{2}$ keys must be pre-distributed!
- Every participant needs to store n different keys
- Say, $n = 6 \cdot 10^9 \dots$

Problems of symmetric model (2/3)

Non-repudiation:

- You can authenticate yourself and your messages to your friends by using MAC=s
- However, MAC-s use shared key
- Therefore, you cannot prove to third parties that messages were really sent by your friend and not by yourself!

Public key cryptography: mysterious helper

- All mentioned problems can be solved by using PKC
- Basic idea: everybody has a pair (pk, sk) of public and secret keys
- If you want to send to me a message, you first fetch my pk from somewhere (phone book?), then encrypt a message by pk and send the result to me
- I will decrypt the ciphertext by using my secret key

PKC: model

PKC: model

Alice obtains public key from an *authenticated* channel, no privacy during this is necessary!

T-79.159 Cryptography and Data Security, 19.02.2003

Lecture 5: Public Key Algorithms, Helger Lipmaa

Public-Key Cryptography: Assumptions

- PKC bases on clear mathematics
 - * Existence of one-way functions, and related primitives
- "Crazy" solutions (AES-like or DES-like) are not accepted
- Important to know: PKC bases on the assumption that there is one OWF
- If this OWF gets "broken", it can be substituted with another one
 assuming that OWFs exist

Etude: Elementary mathematics (1/2)

(Known from the discrete mathematics course)

- For any integer n, $\mathbb{Z}_n = \{0, \dots, n-1\}$
- \mathbb{Z}_n is an additive group: $a+b=c \mod n$. E.g., $7+12=19\equiv 6 \mod 13$, thus 7+12=6 in \mathbb{Z}_{13}
- Analogously, one can define modular multiplication: $7 \cdot 12 = 84 \equiv 6 \mod 13$
- However, \mathbb{Z}_n is not a group w.r.t. multiplication, since not all elements of \mathbb{Z}_n have inverses

Etude: Elementary mathematics (2/2)

(Known from the discrete mathematics course)

- y is inverse of x modulo n iff $xy = 1 \mod n$
- For any integer n, $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n : x \text{ has an inverse modulo } n\}$
- Elementary result: x has an inverse iff gcd(x, n) = 1
- E.g., $4^{-1} \equiv 10 \mod 13$ since $4 \cdot 10 = 40 \equiv 1 \mod 13$, but 4 does not have an inverse modulo 12, since $\gcd(4,12) = 4 \neq 1$
- Euler's totient function $\varphi(n) := \sharp \mathbb{Z}_n^*$

RSA (1/2)

- The first proposed cryptosystem (Rivest, Adleman, Shamir, 1977), works in \mathbb{Z}_n^* where n=pq is a product of two secret primes
- Still the most used public-key cryptosystem
- Slow key generation
- Sub-exponential attacks known, thus long keys
- Not readily generalizable to other algebraic structures
- No semantic security

RSA (2/2)

- Key generation: generate two random large primes p, q, set n = pq. Choose an e, s.t. $gcd(e, \varphi(n)) = 1$. Compute $d := e^{-1} \mod \varphi(n)$
- (n, e) is the public key, (p, q, d) is the secret key.
- To encrypt an $x \in \mathbb{Z}_n^*$, compute $y = x^e \mod n$
- To decrypt $y \in \mathbb{Z}_n^*$, compute $y^d \mod n$
- Clearly, $x^{ed \mod \varphi(n)} \equiv x \mod n$

RSA: efficiency

- Usually, e=3 or $e=2^{16}+1$ is used. This speeds up exponentiation: $x^3 \equiv x^2 \cdot x \mod n$ can be computed in two multiplications, $x^{2^{16}+1} = (((x^2)^2)^{\cdots 2})^2 \cdot x \mod n$ in 17 multiplications. Thus, encryption is fast.
- Decryption needs in average k/2 multiplications when k-bit modulus is used. (Can be sped up by using the Chinese Remainder Theorem.)
- Generating primes p and q can be done efficiently by using randomized algorithms (Rabin-Williams, ...)

See algorithms from the textbook

RSA: security (1/3)

- If n can be factorized then one can recompute $\varphi(n)=(p-1)(q-1)$, and hence also $d=e^{-1} \mod \varphi(n)$
 - ★ Factoring is easy ⇒ RSA is broken
- Best factorization algorithms: quadratic field sieve, generalized number field sieve, elliptic curve factorization method
- Modulus must be at least 1024-bit long to resist factoring
- It is not known whether breaking RSA is equivalent to factoring, it is believed that it is not

RSA: security (2/3)

- RSA security (in the sense of message recovery) bases on the difficulty of computing roots (the RSA problem): given (x,e) and an RSA modulus n, it is difficult to compute $x^{e^{-1}} \mod n$
- Semantic security: you can choose x_1 and x_2 , and let the black box one of them (as chosen by the black box). You get the ciphertext $y = E_K(m_b)$ for random $b \leftarrow \{0, 1\}$. You must guess the value of b
- Example: you know that Napoleon is either encrypting "Attack" or "Relax". Clearly it is relevant that the encryption scheme must be semantically secure!

RSA: security (3/3)

- RSA is not semantically secure, since it is deterministic: you can encrypt both "Attack" and "Relax" yourself, and compare the outcomes with the received ciphertext
- Various methods exist for making RSA semantically secure; many ad hoc methods have been broken (including PKCS as described in the textbook)
- RSA together with OAEP (Optimal Asymmetric Encryption Padding, Bellare and Rogaway, 1994 — as improved by Shoup and others in 2001) is *provably* semantically secure, but the resulting scheme is quite complex

Alternative: Discrete logarithm problem

• Take any "good" group G

$$\star \mathbb{Z}_p = \{0, 1, \dots, p-1\}$$

- * Elliptic curves
- In these groups: Exponentiation g^x is easy, but given (g,g^x) it is difficult to find x
 - * This is the discrete logarithm problem: $(g, g^x) \rightarrow x$

Elliptic curve

Fix a field \mathbb{F} of characteristic $c \neq 2,3$ (for those cases, formulas are slightly different). Elliptic curve is a nonsingular cubic curve,

$$C: y^2 = x^3 + ax + b$$

Nonsingular: $x^3 + ax + b$ has no repeated factors

Elliptic curve points: all pairs $(x,y) \in \mathbb{F}^2$ that belong to C together with a special point \mathcal{O} at the infinity.

Elliptic curve: illustration

Here, $\mathbb{F} = \mathbb{R}!$

Elliptic curve group

- Take E(C) be the set of all EC points
- For two points P, Q on the curve, define P + Q as follows:
- ...Draw a line that crosses P and Q
- ... Find the third intersection point of this line and the curve
- Mirror this point w.r.t. y-axis

Elliptic curve group: illustration

Elliptic curve group: illustration

EC addition: formulas

Curve: $y^2 = x^3 + ax + b$, $\mathbb{F} = \mathbb{R}$. Define group $E_{\mathbb{F}}(C)$ as follows.

Let $P=(x_1,y_1),\ Q=(x_2,y_2).$ If $Q=(x_1,-y_1),$ define $P+Q=\mathcal{O}.$ Otherwise, define the slope of line connecting P and Q: $\lambda=\left\{\frac{y_2-y_1}{x_2-x_1},\quad P\neq Q, \\ \frac{3x_1^2+a}{2y_1},\quad P=Q.\right\}$

Then
$$P + Q = (x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_1 - x_3) - y_1).$$

Special cases when one of the two addends is \mathcal{O} : $P + \mathcal{O} = \mathcal{O} + P = P$.

EC group

Theorem Let \mathbb{F} be an *arbitrary* field of characteristic $c \neq 2,3$. Let C: $y^2 = x^3 + ax + b$. Then $(E_{\mathbb{F}}(C),+)$ is a group w.r.t. addition defined in previous slide.

Unit element: O

Inverse: $-\mathcal{O} = \mathcal{O}$, -(x,y) = (x,-y)

Commutativity: easy

Associativity: harder to prove

Discrete logarithm problem in EC group

- Fix the field $\mathbb{F}=\mathsf{GF}(q)$, usually $q=2^p$ or q=p for a prime p, and $q\geq 2^{160}$
- Given $g \in E_{\mathbb{F}}(C)$ of large order, and a random $x \in \mathbb{Z}_{\text{ord }g}$, compute x from (g, xg)
- Note: here we use the additive notation. (xg is exponentiation!)
- Believed to be hard: the best algorithm to solve the discrete logarithm problem on a random curve takes $\approx \sqrt{q}$ steps

Algorithms for discrete logarithm problem

Generic algorithms (work for all groups, do not use the structure of group):

- Exhaustive search
- Shanks's baby-step giant-step
- Pollard's rho algorithm
- Pohlig-Hellman algorithm

Algorithms for discrete logarithm problem

Tailored algorithm (for specific groups):

- ullet Index calculus for DL problem in \mathbb{Z}_p^*
- DL in $(\mathbb{Z}_p, +)$ can be solved trivially!
- No tailored algorithms are known for randomly chosen elliptic curves!

DLP: Exhaustive search

Given (g, h), $h = g^x$ for unknown x:

- Successively compute g^0 , g^1 , g^2 , ..., until h is obtained
- Requires 1 multiplication per step, hence x multiplications in total
- ullet Asymptotically: $O(\operatorname{ord} g)$ multiplications, $\operatorname{ord} g$ is the order of g

For function f, g = O(f) if for some constant $c, g(x) \le cf(x)$ for all x

Recommendations for a good group

For the best algorithm for DL to take $\geq 2^k$ steps:

- To dwarf the rho algorithm, choose $n \geq 2k$
- To dwarf the Pohlig-Hellman algorithm, make sure that the greatest divisor p of ord g is big, $p \geq 2k$. Usually, g is chosen to generate a subgroup of prime order
- Choose a group without any tailored algorithms for DL

A randomly chosen EC group over GF(q), $q = 2^p$ or q = p, with $q \ge 2^{160}$ seems to be secure

Diffie-Hellman key exchange

Assume we have a fixed group G and an $g \in G$ with large order

Alice Bob

Alternatively, y_A is Alice's public key, y_B is Bob's public key, and both can be fetched from a directory

Security of the DH key exchange

Adversary is successful, if, given (g, g^{x_A}, g^{x_B}) she can compute $g^{x_A x_B}$. This is called the *Diffie-Hellman problem* (DH problem).

If DL problem is tractable, then so is the DH problem: compute x_A from (g, g^{x_A}) and then compute $g^{x_A x_B}$ from (g, x_A, g^{x_B})

It is *not* known, if the opposite reduction holds, but the best known algorithms for the DH problem need solving the DL problem

ElGamal cryptosystem

Security of the ElGamal cryptosystem

Message recovery from (mh^r, g^r) and public key $h = g^x$: can be done if DH is tractable. (Compute $h^r = g^{xr}$ from g^r and g^x .)

Is the opposite true? (Can one solve DH, if it is feasible to recover m from (mh^r, g^r) and $h = g^x$?)

Yes, since then one can also recover $h^r = g^{rx}$.

Thus: one can use any group where the DH problem is hard

ECC: ElGamal over an elliptic curve group

More stringent security notions

- Semantic security: given m_0 and m_1 , distinguish random encryptions of m_0 from m_1
- ... E.g., was the plaintext "yes" or "now"?
- Equivalent (informal) definition: given ciphertext of unknown plaintext m, decide where P(m) is true for some predicate P
- ... E.g., decide whether plaintext contained the word "attack"

Semantic Security of ElGamal

- Theorem (Jakobsson, Tsiounis, Yung, 1998). ElGamal is semantically secure if the following *Decisional Diffie-Hellman* (DDH) problem is hard: Given (g, g^x, g^y, h) , decide whether $h = g^{xy}$ or $h = g^z$ for random z.
- ElGamal is not secure against the chosen ciphertext attack. Why? (Try to solve)
 - \star (Hint: use the *homomorphic* property $E_K(m_1+m_2)=E_K(m_1)E_K(m_2)$.)

PKC: brief overview

- ECC: ElGamal over EC. Short keys (\geq 160 bits), fast key generation. Semantically secure. Can be made secure against the CCA. Security bases on the DDH assumption in elliptic curves
- RSA. Long keys (≥ 1024 bits), slow key generation, fast encryption.
 Can be made semantically secure by using the OAEP. Security bases on the RSA assumption
- Other systems: NTRU (long keys, ≥ 1700 bits, 100...300 times faster than RSA, less known and studied), XTR (a variant of ElGamal in GF(p^6), key ≥ 340 bits, approximately as fast as ECC, security bases on the DDH assumption in \mathbb{Z}_p^*), ...

Next time

- Identification
- Digital signatures
- Zero-knowledge