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Recap: what we have done

• First lecture: general overview

• Second lecture: secret-key cryptography

• Third lecture: Modes of operation

• Fourth lecture: Hash functions
Lectures 2–4 are all about secret-key cryptography!

• Today: Public key algorithms
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Problems of symmetric model (1/3)

• Alice and Bob need to share a key

? distributed over a private channel

? say, when they meet in a pub

• Private channels are very expensive

? especially in Finland
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Problems of symmetric model (2/3)

Huge number of keys when scaling:

• n participants who want to communicate pairwise secretly

• Every pair needs a secret key, there are
(
n
2

)
= n2−n

2 pairs

• Thus, n2−n
2 keys must be pre-distributed!

• Every participant needs to store n different keys

• Say, n = 6 · 109. . .
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Problems of symmetric model (2/3)

Non-repudiation:

• You can authenticate yourself and your messages to your friends by
using MAC=s

• However, MAC-s use shared key

• Therefore, you cannot prove to third parties that messages were really
sent by your friend and not by yourself!
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Public key cryptography: mysterious helper

• All mentioned problems can be solved by using PKC

• Basic idea: everybody has a pair (pk, sk) of public and secret keys

• If you want to send to me a message, you first fetch my pk from some-
where (phone book?), then encrypt a message by pk and send the
result to me

• I will decrypt the ciphertext by using my secret key
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PKC: model

Alice Bob

Eve

C = EK(M)M

Bob’s public key
pk (pk, sk)

E−1
skEpk

M = E−1
sk (Epk(M))
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PKC: model

Pl
ai

nt
ex

t

Ciphertext

Adversary

Sender Receiver

Public channel

Authenticated channel

Public key cryptosystem, Encryption Public key cryptosystem, Decryption

Alice Bob

Eve

C = EK(M)M

Bob’s public key
pk (pk, sk)

E−1
skEpk

M = E−1
sk (Epk(M))

Alice obtains public key from an authenticated channel, no privacy during
this is necessary!
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Public-Key Cryptography: Assumptions

• PKC bases on clear mathematics

? Existence of one-way functions, and related primitives

• “Crazy” solutions (AES-like or DES-like) are not accepted

• Important to know: PKC bases on the assumption that there is one
OWF

• If this OWF gets “broken”, it can be substituted with another one —
assuming that OWFs exist
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Etude: Elementary mathematics (1/2)

(Known from the discrete mathematics course)

• For any integer n, Zn = {0, . . . , n− 1}

• Zn is an additive group: a + b = c mod n. E.g., 7 + 12 = 19 ≡ 6
mod 13, thus 7 + 12 = 6 in Z13

• Analogously, one can define modular multiplication: 7 · 12 = 84 ≡ 6
mod 13

• However, Zn is not a group w.r.t. multiplication, since not all elements
of Zn have inverses
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Etude: Elementary mathematics (2/2)

(Known from the discrete mathematics course)

• y is inverse of x modulo n iff xy = 1 mod n

• For any integer n, Z∗n = {x ∈ Zn : x has an inverse modulo n}

• Elementary result: x has an inverse iff gcd(x, n) = 1

• E.g., 4−1 ≡ 10 mod 13 since 4 · 10 = 40 ≡ 1 mod 13, but 4
does not have an inverse modulo 12, since gcd(4,12) = 4 6= 1

• Euler’s totient function ϕ(n) := ]Z∗n
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RSA (1/2)

• The first proposed cryptosystem (Rivest, Adleman, Shamir, 1977),
works in Z∗n where n = pq is a product of two secret primes

• Still the most used public-key cryptosystem

− Slow key generation

− Sub-exponential attacks known, thus long keys

− Not readily generalizable to other algebraic structures

− No semantic security
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RSA (2/2)

• Key generation: generate two random large primes p, q, set n = pq.
Choose an e, s.t. gcd(e, ϕ(n)) = 1. Compute d := e−1 mod ϕ(n)

• (n, e) is the public key, (p, q, d) is the secret key.

• To encrypt an x ∈ Z∗n, compute y = xe mod n

• To decrypt y ∈ Z∗n, compute yd mod n

• Clearly, xed mod ϕ(n) ≡ x mod n
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RSA: efficiency

• Usually, e = 3 or e = 216+1 is used. This speeds up exponentiation:
x3 ≡ x2·x mod n can be computed in two multiplications, x216+1 =

(((x2)2)···2)2 · x mod n in 17 multiplications. Thus, encryption is
fast.

• Decryption needs in average k/2 multiplications when k-bit modulus
is used. (Can be sped up by using the Chinese Remainder Theorem.)

• Generating primes p and q can be done efficiently by using randomized
algorithms (Rabin-Williams, . . . )

See algorithms from the textbook
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RSA: security (1/3)

• If n can be factorized then one can recompute ϕ(n) = (p−1)(q−1),
and hence also d = e−1 mod ϕ(n)

? Factoring is easy⇒ RSA is broken

• Best factorization algorithms: quadratic field sieve, generalized num-
ber field sieve, elliptic curve factorization method

• Modulus must be at least 1024-bit long to resist factoring

• It is not known whether breaking RSA is equivalent to factoring, it is
believed that it is not
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RSA: security (2/3)

• RSA security (in the sense of message recovery) bases on the diffi-
culty of computing roots (the RSA problem): given (x, e) and an RSA
modulus n, it is difficult to compute xe−1

mod n

• Semantic security : you can choose x1 and x2, and let the black box
one of them (as chosen by the black box). You get the ciphertext y =

EK(mb) for random b← {0,1}. You must guess the value of b

• Example: you know that Napoleon is either encrypting “Attack” or “Re-
lax”. Clearly it is relevant that the encryption scheme must be seman-
tically secure!
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RSA: security (3/3)

• RSA is not semantically secure, since it is deterministic: you can en-
crypt both “Attack” and “Relax” yourself, and compare the outcomes
with the received ciphertext

• Various methods exist for making RSA semantically secure; many ad
hoc methods have been broken (including PKCS as described in the
textbook)

• RSA together with OAEP (Optimal Asymmetric Encryption Padding,
Bellare and Rogaway, 1994 — as improved by Shoup and others in
2001) is provably semantically secure, but the resulting scheme is
quite complex
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Alternative: Discrete logarithm problem

• Take any “good” group G

? Zp = {0,1, . . . , p− 1}

? Elliptic curves

• In these groups: Exponentiation gx is easy, but given (g, gx) it is diffi-
cult to find x

? This is the discrete logarithm problem: (g, gx)→ x

T-79.159 Cryptography and Data Security, 19.02.2003 Lecture 5: Public Key Algorithms, Helger Lipmaa

18



Elliptic curve

Fix a field F of characteristic c 6= 2,3 (for those cases, formulas are slightly
different). Elliptic curve is a nonsingular cubic curve,

C : y2 = x3 + ax + b

Nonsingular: x3 + ax + b has no repeated factors

Elliptic curve points: all pairs (x, y) ∈ F2 that belong to C together with a
special point O at the infinity.
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Elliptic curve: illustration

Here, F = R!
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Elliptic curve group

• Take E(C) be the set of all EC points

• For two points P, Q on the curve, define P + Q as follows:

• . . . Draw a line that crosses P and Q

• . . . Find the third intersection point of this line and the curve

• Mirror this point w.r.t. y-axis
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Elliptic curve group: illustration

Q

P
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Elliptic curve group: illustration

Q

P

P + Q
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EC addition: formulas

Curve: y2 = x3 + ax + b, F = R. Define group EF(C) as follows.

Let P = (x1, y1), Q = (x2, y2). If Q = (x1,−y1), define P + Q =

O. Otherwise, define the slope of line connecting P and Q: λ =
y2−y1
x2−x1

, P 6= Q,

3x2
1+a

2y1
, P = Q.

Then P + Q = (x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1).

Special cases when one of the two addends is O: P +O = O+ P = P .
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EC group

Theorem Let F be an arbitrary field of characteristic c 6= 2,3. Let C :

y2 = x3 + ax + b. Then (EF(C),+) is a group w.r.t. addition defined in
previous slide.

Unit element: O

Inverse: −O = O, −(x, y) = (x,−y)

Commutativity: easy

Associativity: harder to prove
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Discrete logarithm problem in EC group

• Fix the field F = GF(q), usually q = 2p or q = p for a prime p, and
q ≥ 2160

• Given g ∈ EF(C) of large order, and a random x ∈ Zord g, compute x

from (g, xg)

• Note: here we use the additive notation. (xg is exponentiation!)

• Believed to be hard: the best algorithm to solve the discrete logarithm
problem on a random curve takes ≈ √q steps
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Algorithms for discrete logarithm problem

Generic algorithms (work for all groups, do not use the structure of group):

• Exhaustive search

• Shanks’s baby-step giant-step

• Pollard’s rho algorithm

• Pohlig-Hellman algorithm
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Algorithms for discrete logarithm problem

Tailored algorithm (for specific groups):

• Index calculus for DL problem in Z∗p

• DL in (Zp,+) can be solved trivially!

• No tailored algorithms are known for randomly chosen elliptic curves!
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DLP: Exhaustive search

Given (g, h), h = gx for unknown x:

• Successively compute g0, g1, g2, . . . , until h is obtained

• Requires 1 multiplication per step, hence x multiplications in total

• Asymptotically: O(ord g) multiplications, ord g is the order of g

For function f , g = O(f) if for some constant c, g(x) ≤ cf(x) for all x
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Recommendations for a good group

For the best algorithm for DL to take ≥ 2k steps:

• To dwarf the rho algorithm, choose n ≥ 2k

• To dwarf the Pohlig-Hellman algorithm, make sure that the greatest
divisor p of ord g is big, p ≥ 2k. Usually, g is chosen to generate a
subgroup of prime order

• Choose a group without any tailored algorithms for DL

A randomly chosen EC group over GF(q), q = 2p or q = p, with q ≥ 2160

seems to be secure
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Diffie-Hellman key exchange

Assume we have a fixed group G and an g ∈ G with large order

yA

yB

Alice Bob
Private input: xB (secret key)Private input: xA (secret key)

Output: yxA

B = gxAxB Output: yxB

A = gxAxB

Compute yB := gxB

Compute yA := gxA

Alternatively, yA is Alice’s public key, yB is Bob’s public key, and both can
be fetched from a directory
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Security of the DH key exchange

Adversary is successful, if, given (g, gxA, gxB) she can compute gxAxB .
This is called the Diffie-Hellman problem (DH problem).

If DL problem is tractable, then so is the DH problem: compute xA from
(g, gxA) and then compute gxAxB from (g, xA, gxB)

It is not known, if the opposite reduction holds, but the best known algo-
rithms for the DH problem need solving the DL problem
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ElGamal cryptosystem

Bob’s public key

K := (G, g, h)

Eve

C = EK(M) MM

Public keyh := gxB

K

Alice Bob

r ← Zq

Output(u, v)

M ′ := u/vxB

OutputM ′(u, v) := (Mhr, gr)

Secret keyxB ← Zq

Public parameters(G, g)
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Security of the ElGamal cryptosystem

Message recovery from (mhr, gr) and public key h = gx: can be done if
DH is tractable. (Compute hr = gxr from gr and gx.)

Is the opposite true? (Can one solve DH, if it is feasible to recover m from
(mhr, gr) and h = gx?)

Yes, since then one can also recover hr = grx.

Thus: one can use any group where the DH problem is hard

ECC: ElGamal over an elliptic curve group
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More stringent security notions

• Semantic security : given m0 and m1, distinguish random encryptions
of m0 from m1

• . . . E.g., was the plaintext “yes” or “now”?

• Equivalent (informal) definition: given ciphertext of unknown plaintext
m, decide where P (m) is true for some predicate P

• . . . E.g., decide whether plaintext contained the word “attack”
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Semantic Security of ElGamal

• Theorem (Jakobsson, Tsiounis, Yung, 1998). ElGamal is semanti-
cally secure if the following Decisional Diffie-Hellman (DDH) problem
is hard: Given (g, gx, gy, h), decide whether h = gxy or h = gz for
random z.

• ElGamal is not secure against the chosen ciphertext attack. Why? (Try
to solve)

? (Hint: use the homomorphic property EK(m1 + m2) =

EK(m1)EK(m2).)
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PKC: brief overview

• ECC: ElGamal over EC. Short keys (≥ 160 bits), fast key generation.
Semantically secure. Can be made secure against the CCA. Security
bases on the DDH assumption in elliptic curves

• RSA. Long keys (≥ 1024 bits), slow key generation, fast encryption.
Can be made semantically secure by using the OAEP. Security bases
on the RSA assumption

• Other systems: NTRU (long keys, ≥ 1700 bits, 100 . . .300 times
faster than RSA, less known and studied), XTR (a variant of ElGamal
in GF(p6), key ≥ 340 bits, approximately as fast as ECC, security
bases on the DDH assumption in Z∗p), . . .
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Next time

• Identification

• Digital signatures

• Zero-knowledge
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