T-79.159 Cryptography and Data Security

Lecture 5: Public Key Algorithms

Helger Lipmaa
Helsinki University of Technology
helger@tcs.hut.fi
Recap: what we have done

- First lecture: general overview
- Second lecture: secret-key cryptography
- Third lecture: Modes of operation
- Fourth lecture: Hash functions
 Lectures 2–4 are all about secret-key cryptography!

- Today: Public key algorithms
Problems of symmetric model (1/3)

- Alice and Bob need to share a key
 - distributed over a private channel
 - say, when they meet in a pub

- Private channels are very expensive
 - especially in Finland
Problems of symmetric model (2/3)

Huge number of keys when scaling:

- \(n \) participants who want to communicate pairwise secretly

- Every pair needs a secret key, there are \(\binom{n}{2} = \frac{n^2 - n}{2} \) pairs

- Thus, \(\frac{n^2 - n}{2} \) keys must be pre-distributed!

- Every participant needs to store \(n \) different keys

- Say, \(n = 6 \cdot 10^9 \ldots \)
Problems of symmetric model (2/3)

Non-repudiation:

- You can authenticate yourself and your messages to your friends by using MAC-s.

- However, MAC-s use shared key.

- Therefore, you cannot prove to third parties that messages were really sent by your friend and not by yourself!
Public key cryptography: mysterious helper

- All mentioned problems can be solved by using PKC

- Basic idea: everybody has a pair \((pk, sk)\) of public and secret keys

- If you want to send to me a message, you first fetch my \(pk\) from somewhere (phone book?), then encrypt a message by \(pk\) and send the result to me

- I will decrypt the ciphertext by using my secret key
PKC: model

\[E_{pk}(M) = C = E_{K}(M) = E_{sk}^{-1}(E_{pk}(M)) \]

Bob’s public key

Alice \quad Bob
PKC: model

Alice obtains public key from an *authenticated* channel, no privacy during this is necessary!

T-79.159 Cryptography and Data Security, 19.02.2003 Lecture 5: Public Key Algorithms, Helger Lipmaa
Public-Key Cryptography: Assumptions

- PKC bases on clear mathematics
 - Existence of one-way functions, and related primitives

- “Crazy” solutions (AES-like or DES-like) are not accepted

- Important to know: PKC bases on the assumption that there is one OWF

- If this OWF gets “broken”, it can be substituted with another one — assuming that OWFs exist
Etude: Elementary mathematics (1/2)

(Known from the discrete mathematics course)

• For any integer n, $\mathbb{Z}_n = \{0, \ldots, n - 1\}$

• \mathbb{Z}_n is an additive group: $a + b = c \mod n$. E.g., $7 + 12 = 19 \equiv 6 \mod 13$, thus $7 + 12 = 6$ in \mathbb{Z}_{13}

• Analogously, one can define modular multiplication: $7 \cdot 12 = 84 \equiv 6 \mod 13$

• However, \mathbb{Z}_n is not a group w.r.t. multiplication, since not all elements of \mathbb{Z}_n have inverses
Etude: Elementary mathematics (2/2)

(Known from the discrete mathematics course)

- \(y \) is inverse of \(x \) modulo \(n \) iff \(xy \equiv 1 \mod n \)

- For any integer \(n \), \(\mathbb{Z}_n^* = \{ x \in \mathbb{Z}_n : x \text{ has an inverse modulo } n \} \)

- Elementary result: \(x \) has an inverse iff \(\gcd(x, n) = 1 \)

- E.g., \(4^{-1} \equiv 10 \mod 13 \) since \(4 \cdot 10 = 40 \equiv 1 \mod 13 \), but 4 does not have an inverse modulo 12, since \(\gcd(4, 12) = 4 \neq 1 \)

- Euler’s totient function \(\varphi(n) := \#\mathbb{Z}_n^* \)
RSA (1/2)

- The first proposed cryptosystem (Rivest, Adleman, Shamir, 1977), works in \mathbb{Z}_n^* where $n = pq$ is a product of two secret primes

- Still the most used public-key cryptosystem
 - Slow key generation
 - Sub-exponential attacks known, thus long keys
 - Not readily generalizable to other algebraic structures
 - No semantic security
RSA (2/2)

- Key generation: generate two random large primes p, q, set $n = pq$. Choose an e, s.t. $\gcd(e, \varphi(n)) = 1$. Compute $d := e^{-1} \mod \varphi(n)$

- (n, e) is the public key, (p, q, d) is the secret key.

- To encrypt an $x \in \mathbb{Z}_n^*$, compute $y = x^e \mod n$

- To decrypt $y \in \mathbb{Z}_n^*$, compute $y^d \mod n$

- Clearly, $x^{ed} \mod \varphi(n) \equiv x \mod n$
RSA: efficiency

• Usually, \(e = 3 \) or \(e = 2^{16} + 1 \) is used. This speeds up exponentiation:
 \(x^3 \equiv x^2 \cdot x \mod n \) can be computed in two multiplications,
 \(x^{2^{16}+1} = (((x^2)^2)\cdots)^2 \cdot x \mod n \) in 17 multiplications. Thus, encryption is fast.

• Decryption needs in average \(k/2 \) multiplications when \(k \)-bit modulus is used. (Can be sped up by using the Chinese Remainder Theorem.)

• Generating primes \(p \) and \(q \) can be done efficiently by using randomized algorithms (Rabin-Williams, \ldots)

See algorithms from the textbook
RSA: security (1/3)

• If \(n \) can be factorized then one can recompute \(\varphi(n) = (p-1)(q-1) \), and hence also \(d = e^{-1} \mod \varphi(n) \)

 • Factoring is easy \(\Rightarrow \) RSA is broken

• Best factorization algorithms: quadratic field sieve, generalized number field sieve, elliptic curve factorization method

• Modulus must be at least 1024-bit long to resist factoring

• It is not known whether breaking RSA is equivalent to factoring, it is believed that it is not
RSA: security (2/3)

- RSA security (in the sense of message recovery) bases on the difficulty of computing roots (the RSA problem): given \((x, e)\) and an RSA modulus \(n\), it is difficult to compute \(x^{e^{-1}} \mod n\)

- **Semantic security**: you can choose \(x_1\) and \(x_2\), and let the black box one of them (as chosen by the black box). You get the ciphertext \(y = E_K(m_b)\) for random \(b \leftarrow \{0, 1\}\). You must guess the value of \(b\)

- Example: you know that Napoleon is either encrypting “Attack” or “Relax”. Clearly it is relevant that the encryption scheme must be semantically secure!
RSA: security (3/3)

- RSA is not semantically secure, since it is deterministic: you can encrypt both “Attack” and “Relax” yourself, and compare the outcomes with the received ciphertext.

- Various methods exist for making RSA semantically secure; many ad hoc methods have been broken (including PKCS as described in the textbook).

- RSA together with OAEP (Optimal Asymmetric Encryption Padding, Bellare and Rogaway, 1994 — as improved by Shoup and others in 2001) is provably semantically secure, but the resulting scheme is quite complex.
Alternative: Discrete logarithm problem

- Take any “good” group G

 $\star \mathbb{Z}_p = \{0, 1, \ldots, p - 1\}$

 \star Elliptic curves

- In these groups: Exponentiation g^x is easy, but given (g, g^x) it is difficult to find x

 \star This is the discrete logarithm problem: $(g, g^x) \rightarrow x$
Elliptic curve

Fix a field \(\mathbb{F} \) of characteristic \(c \neq 2, 3 \) (for those cases, formulas are slightly different). Elliptic curve is a nonsingular cubic curve,

\[
C : y^2 = x^3 + ax + b
\]

Nonsingular: \(x^3 + ax + b \) has no repeated factors

Elliptic curve points: all pairs \((x, y) \in \mathbb{F}^2 \) that belong to \(C \) together with a special point \(\mathcal{O} \) at the infinity.
Elliptic curve: illustration

Here, \(F = \mathbb{R} \)!
Elliptic curve group

- Take $E(C)$ be the set of all EC points

- For two points P, Q on the curve, define $P + Q$ as follows:

 - ... Draw a line that crosses P and Q

 - ... Find the third intersection point of this line and the curve

 - Mirror this point w.r.t. y-axis
Elliptic curve group: illustration
Elliptic curve group: illustration
EC addition: formulas

Curve: \(y^2 = x^3 + ax + b, \ F = \mathbb{R} \). Define group \(E_F(C') \) as follows.

Let \(P = (x_1, y_1), \ Q = (x_2, y_2) \). If \(Q = (x_1, -y_1) \), define \(P + Q = O \). Otherwise, define the slope of line connecting \(P \) and \(Q \): \(\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & P \neq Q, \\ \frac{3x_1^2 + a}{2y_1}, & P = Q. \end{cases} \)

Then \(P + Q = (x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_1 - x_3) - y_1) \).

Special cases when one of the two addends is \(O \): \(P + O = O + P = P \).
EC group

Theorem Let \mathbb{F} be an *arbitrary* field of characteristic $c \neq 2, 3$. Let $C : y^2 = x^3 + ax + b$. Then $(E_\mathbb{F}(C), +)$ is a group w.r.t. addition defined in previous slide.

Unit element: \mathcal{O}

Inverse: $-\mathcal{O} = \mathcal{O}$, $-(x, y) = (x, -y)$

Commutativity: easy

Associativity: harder to prove
Discrete logarithm problem in EC group

- Fix the field $\mathbb{F} = \text{GF}(q)$, usually $q = 2^p$ or $q = p$ for a prime p, and $q \geq 2^{160}$

- Given $g \in E_{\mathbb{F}}(C)$ of large order, and a random $x \in \mathbb{Z}_{\text{ord } g}$, compute x from (g, xg)

- Note: here we use the additive notation. (xg is exponentiation!)

- Believed to be hard: the best algorithm to solve the discrete logarithm problem on a random curve takes $\approx \sqrt{q}$ steps
Algorithms for discrete logarithm problem

Generic algorithms (work for all groups, do not use the structure of group):

- Exhaustive search
- Shanks’s baby-step giant-step
- Pollard’s rho algorithm
- Pohlig-Hellman algorithm
Algorithms for discrete logarithm problem

Tailored algorithm (for specific groups):

- Index calculus for DL problem in \mathbb{Z}_p^*
- DL in $(\mathbb{Z}_p, +)$ can be solved trivially!
- No tailored algorithms are known for randomly chosen elliptic curves!
DLP: Exhaustive search

Given \((g, h)\), \(h = g^x\) for unknown \(x\):

- Successively compute \(g^0, g^1, g^2, \ldots, \) until \(h\) is obtained
- Requires 1 multiplication per step, hence \(x\) multiplications in total
- Asymptotically: \(O(\text{ord } g)\) multiplications, \(\text{ord } g\) is the order of \(g\)

For function \(f\), \(g = O(f)\) if for some constant \(c\), \(g(x) \leq cf(x)\) for all \(x\)
Recommendations for a good group

For the best algorithm for DL to take $\geq 2^k$ steps:

- To dwarf the rho algorithm, choose $n \geq 2^k$:

- To dwarf the Pohlig-Hellman algorithm, make sure that the greatest divisor p of $\text{ord } g$ is big, $p \geq 2^k$. Usually, g is chosen to generate a subgroup of prime order

- Choose a group without any tailored algorithms for DL

A randomly chosen EC group over $\text{GF}(q)$, $q = 2^p$ or $q = p$, with $q \geq 2^{160}$ seems to be secure

T-79.159 Cryptography and Data Security, 19.02.2003 Lecture 5: Public Key Algorithms, Helger Lipmaa
Diffie-Hellman key exchange

Assume we have a fixed group G and an $g \in G$ with large order

Alice Bob

Private input: x_A (secret key) Private input: x_B (secret key)

Compute $y_A := g^{x_A}$ Compute $y_B := g^{x_B}$

Output: $y_B^{x_A} = g^{x_Ax_B}$ Output: $y_A^{x_B} = g^{x_Ax_B}$

Alternatively, y_A is Alice’s public key, y_B is Bob’s public key, and both can be fetched from a directory

T-79.159 Cryptography and Data Security, 19.02.2003 Lecture 5: Public Key Algorithms, Helger Lipmaa
Security of the DH key exchange

Adversary is successful, if, given \((g, g^{x_A}, g^{x_B})\) she can compute \(g^{x_A x_B}\). This is called the \textit{Diffie-Hellman problem} (DH problem).

If DL problem is tractable, then so is the DH problem: compute \(x_A\) from \((g, g^{x_A})\) and then compute \(g^{x_A x_B}\) from \((g, x_A, g^{x_B})\)

It is \textit{not} known, if the opposite reduction holds, but the best known algorithms for the DH problem need solving the DL problem.
ElGamal cryptosystem

\[K := (G, g, h) \]

\[C := E_K(M) \]

\[M' := u/v^{xB} \]

Output \((u, v)\)

Output \(M'\)

Eve

\[r \leftarrow \mathbb{Z}_q \]

\[(u, v) := (Mh^r, g^r) \]

Alice

Bob

Public parameters \((G, g)\)

Secret key \(x_B \leftarrow \mathbb{Z}_q\)

Public key \(h := g^{xB}\)
Security of the ElGamal cryptosystem

Message recovery from \((mh^r, g^r)\) and public key \(h = g^x\): can be done if DH is tractable. (Compute \(h^r = g^{xr}\) from \(g^r\) and \(g^x\).)

Is the opposite true? (Can one solve DH, if it is feasible to recover \(m\) from \((mh^r, g^r)\) and \(h = g^x\)?)

Yes, since then one can also recover \(h^r = g^{rx}\).

Thus: one can use any group where the DH problem is hard

ECC: ElGamal over an elliptic curve group
More stringent security notions

- **Semantic security**: given m_0 and m_1, distinguish random encryptions of m_0 from m_1

- ... E.g., was the plaintext “yes” or “now”?

- Equivalent (informal) definition: given ciphertext of unknown plaintext m, decide where $P(m)$ is true for some predicate P

- ... E.g., decide whether plaintext contained the word “attack”
Semantic Security of ElGamal

- **Theorem (Jakobsson, Tsiounis, Yung, 1998).** ElGamal is semantically secure if the following *Decisional Diffie-Hellman* (DDH) problem is hard: Given \((g, g^x, g^y, h)\), decide whether \(h = g^{xy}\) or \(h = g^z\) for random \(z\).

- ElGamal is not secure against the chosen ciphertext attack. Why? (Try to solve)

 \[
 \text{\textstar (Hint: use the } homomorphnic\text{ property } E_K(m_1 + m_2) = E_K(m_1)E_K(m_2).)\]
PKC: brief overview

• ECC: ElGamal over EC. Short keys (≥ 160 bits), fast key generation. Semantically secure. Can be made secure against the CCA. Security bases on the DDH assumption in elliptic curves

• RSA. Long keys (≥ 1024 bits), slow key generation, fast encryption. Can be made semantically secure by using the OAEP. Security bases on the RSA assumption

• Other systems: NTRU (long keys, ≥ 1700 bits, 100...300 times faster than RSA, less known and studied), XTR (a variant of ElGamal in $\mathbb{GF}(p^6)$, key ≥ 340 bits, approximately as fast as ECC, security bases on the DDH assumption in \mathbb{Z}_p^*),...
Next time

- Identification
- Digital signatures
- Zero-knowledge