T-79.159 Cryptography and Data Security

Lecture 4. Hashes and Message Digests

Markku-Juhani O. Saarinen
Helsinki University of Technology

mjos@tcs.hut.fi

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

Cryptographic hash functions

e Maps a message M (a bit string of arbitrary length) as a “message
digest” X = H (M) of constant length, e.g. 128, 160, or 256 bits.

e Well-known examples: MD5, SHA-1, RIPEMD-160, SHA-256.

e Security requirement 1:
One-wayness. Given a message X, it is should be “hard” to find a
message M satisfying X = H(M).

e Security requirement 2:
Collision resistance. It should be “hard” to find two messages
M1 #= M> such that H(Mq) = H(M>).

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

A Hash Function
ﬁ

Stuff goes in.. /\/

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4. Hashes and Message Digests,

Markku-Juhani O. Saarinen

UNIX Password authentication

1. User enters password (key):
Login: falken
Password: e

2. System looks up user in /etc/passwd file and finds the correspond-
Ing hashed key value and other relevant data:
falken: cV/h5TT95.pzQ :1085:1085:Prof. Falken

3. First 2 chars, cV, is the salt. Now the system compares the output of
the crypt system call to the encrypted string:
char *crypt(const char *key, const char *salt);

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4. Hashes and Message Digests,

Markku-Juhani O. Saarinen

UNIX Password authentication (2)

e No need to store the key itself, just H (salt || key)

e The password file /etc/passwd can be world-readable! (And often
IS, although this makes systems more vulnerable to dictionary attacks.)

e Salt slows down dictionary attacks. To check whether some user (from
a large group) has a given password, the word has to be hashed with
each one of the salts.

e UNIX crypt(3) is one-way, but not really collision resistant. Based
on DES. Developed by Robert Morris (Sr.) ca. 1975 — still in use today.

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

SHA-1 and MD5 Fingerprints

e How do you know that your system files have not been tampered with
(by viruses or trojans installed by intruders) ?

e One way is to maintain a database of file fingerprints and compare
them to known good values (e.g. www.knowngoods.org).

e Length checking is not sufficient; simple “checksums” won't be secure
enough. One-wayness clearly a requirement.

e Example: Computing a 128-bit MD5 digest of Linux kernel:
$ md5sum /boot/vmlinuz
95fh55766efa90bfel10c25cd2e9daaad /boot/vmlinuz

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4. Hashes and Message Digests,

Markku-Juhani O. Saarinen

Collision resistance

e What if the software distributor tries to cheat ? Could he create a
“good” file and a “bad” file (say, with a back-door), such that they have
the same digest ?

e This is different from one-wayness, since the distributor can create
both files (good and bad ones) simultaneously.

e If a n-bit hash is one-way, it takes 2™ effort to find a message M sat-
isfying H(M) = X, given just X.

e If a n-bit hash is collision-resistant, it takes no more than /2" = on/2
to find two messages M7 #= M»> such that H(M71) = H(M>). Why ?

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

Birthday paradox

Question:

“How many persons needs to be in a room before we can expect two of
them to have the same birthday?”

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

Birthday paradox

Question:

“How many persons needs to be in a room before we can expect two of
them to have the same birthday?”

Answer:
23.

Why ?

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

Birthday paradox (2)

n(n 1)

n persons make up exactly pairs.

Each pair has probability 322 of not having the same birthday. Since these

events are very close to being unrelated, the total probability of no-one

having the same birthday is roughly (ggg)

Substituting n = 23 we get (322)2%3 ~ 0.499523.

(So this is not a “paradox” at all.)

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

10

Birthday paradox (3)
More generally: We wish to find n (“number of persons”) as a function of
m (“number of days in year”), so that probability of a match is %:

n(n—1)
(1 - 1)y "2 =3, taking logs:
n("Q_l) In(1—1)=—In2.

: 11 1 1
When z > 2, there is a bound — — 5 < In(1—2) < —=.
We get an approximation 0.7213 % (n2 — n) ~ m.

Asymptotically n = O(y/m).

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

11

Rules of thumb

e As implicated by the birthday paradox, there are algorithms that find
a collision (birthday match) with O(y/m) effort. Neglible memory is
required by the algorithms.

e Hence to have collision resistance with n-bit security, the hash should
be at least 2n bits long; e.g. 128-bit hashes give 64-bit security.

e If only one-wayness is required, then n bits is sufficient for n-bit secu-
rity.

e Beware that some hash functions (like MD4) have been broken; they
do not have the security level implicated by hash size.

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

12

How do hash functions actually work?

e Additional design requirement besides one-wayness and collision re-
sistance: it should be possible to hash long messages without storing
the whole thing in memory (e.g. signing a backup tape).

e Long message is cut into pieces M; of equal size and a state variable
X, Is maintained.

e The last piece M, is padded with the length of message and the final
value of the state variable X, is the hash.

e Many other approaches have been proposed, but almost all practical
hash functions work like this.

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

13

Davies-Meyer (1985)

e Use a block cipher E(K, P). Start with some initial value Xy and
update as X, 1 = E(M;, X;) ® X;. Final value X, is the hash.

e Provably secure (if the block cipher is secure).

e Since each piece M; is used to key the block cipher, hashing speed
Is directly proportional to key size (rather than block size). Resulting
hash size is equal to block size.

e Most block ciphers are optimized for fast encryption rather than fast
key initialization; hence dedicated hash functions. E(M;, X;) & X; IS
called “compression function” in the context of these dedicated hash
functions.

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

14

Message Digest 5 (MDb5)

e Very widely used hash function (message digest). Fingerprints, PGP
2.X, PKI x509, etc.

e Designed by Ron Rivest (MIT), 1992. Specified in RFC 1321. MD5
means that this is Rivest’s fifth message digest design.

e Produces a 128-bit hash; has no more than 64-bit security. Processes
messages in 512-bit blocks.

e Hans Dobbertin (BSI) found a flaw in the compression function of MD5
In 1996; hence its security proofs do not hold. However, collisions have
not been computed yet. Do not use in new products.

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

15

Secure Hash Algorithm - 1 (SHA-1)

e U.S./NIST federal standard 180-1/2. Currently the most popular cryp-
tographic hash algorithm.

e Produces a 160-bit hash; 80-bit security. Processes messages in 512-
bit blocks. Similar in design to MD4 and MD5.

e Designed by unknown persons at NSA in 1993 (original design is
known as SHA-0). Slightly modified for (then) unspecified reasons in
1995. New version known as SHA-1.

e Chabaud and Joux (CASSI/SCY/EC) published in 1998 an attack
against SHA-0 (collisions with 201 effort rather than 28°) that showed
that SHA-1 was indeed more secure than SHA-O.

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

16

SHA - 1 (2)

Initial Values

67462301, EFCDABES, BEEADCFE, 10326476, C3D2ZE1F0), o B ¢ D L
(|
[N}
B 5AB27999 15
Repeat 200 times) 1 ™/ W,
E=0...19 o | B ‘
ELEI
i 3 3 3 3
A B C D E
\ o - Input block
Repeat n— 1 times. Compression Function. (64 bytes). []
A B C D E
am EEDSEBAL 15
|_‘—| Repeat 200 times E
=4 t=20...39
3
i I ==
B
i
(]
fum)
[N}
H 8F1BBCDC |4
Repeat 20 times [} 1 Iaal "
t=40...59 = sajority] !
b 3 3 3 3 H
A B ; D E
Compression Function. Last hlm.k
and padding,
A B C D E
3
“H
Nun| CA62C1D6 4
H I—LI R
£ tepeat 20 times .
I E 3
= h[] i t==60...79 W
sl 1]
(]
9

Hash word 1 Hash word 2 Hash word 3 Hash word 4 Hash word 5

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

17

Other dedicated hash algorithms

e RIPE-MD 160 is a robust European hash function. 160-bit hash.

e In 2000, NSA proposed new hash functions that produce 256- and 512
bit hashes. Known as SHA-256 and SHA-512.

e Some speed measurements on a 1.4 GHz AMD Athlon Linux:

MD2 5 010 kB/s MD4 274 556 kB/s
MD5 238 392 kB/s SHA-1 127 283 KkB/s
RIPE MD-160 84 896 kB/s

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

18

Message Authentication Codes (MACS)

e Protects against unauthorized or accidental message manipulation.

e Uses a secret key K to make sure that a message is actually from
its assumed sender. MAC is appended to the message. Recipient
computes the MAC again from the message and K and verifies it.

e |t seems natural to use dedicated hash functions for computation of
MACs (fast!), especially if encryption isn’t needed.

e Many MACs have been proposed, the most common being HMAC
(“hash MAC”), Krawczyk et al (IBM), 1997.

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

19

A Stupid MAC

Question:

“Hey! Why not just append the message after the key, hash the whole thing
and use that as a MAC ?” (i.e. MAC = H(K | M))

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

20

A Stupid MAC

Question:
“Hey! Why not just append the message after the key, hash the whole thing
and use that as a MAC ?” (i.e. A= H(K | M))

Answer:

Eve sees the message M and the MAC A. Because of the way the Davies-
Meyer mode works, she has the state of the hash function X,, = A at
the end of the current message M. Now she can just add anything after
that and compute more iterations X, 4 1, X, 1o, -+ with the compression
function, and finally do a new padding.

MAC must detect changes in the message length as well!

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

21

HMAC

e Defined in RFC 2104. Can be used used with many dedicated hash
functions: HMAC-MD5, HMAC-SHA1, HMAC-RIPEMD.

e The output can be truncated by simply taking the first n bits of output
(e.g. HMAC-SHA1-96 is used in the IPSEC protocol).

e Uses two constants, ipad (64 0x36 bytes) and opad (64 0x5c bytes).
e Definedas H(K @ opad | H(K @ipad | M))

e Only slightly slower than computation of H (M) for long messages.

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

22

Key generators

e Where do all of the cryptographic keys come from ?

e Example: AES Needs a 128-bit (16 byte) key, but 16 letters of En-
glish contains less than 32 bits of entropy: Directly using a human-
understandable key is not a good idea.

e Solution: hash the key first. This way the input key can be of any
length! Such long keys are often called passphrases.

e If protocols need random, unpredictable values (nonces), use proper
random number generators. These are often based on hash functions.

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

23

Pseudorandom Number Generators (PRNGS)

Cautionary tale of the Netscape PRNG in 1995.

e Netscape Navigator 1.1 had the first version of the now-popular SSL
protocol. Keys for encryption were generated using a PRNG.

e The PRNG was initialized from time() on program startup and the
conseqguent outputs were deterministically based on this seed.

e Guess the 32-bit time value (which is not a secret; everyone has a
clock) and you can predict all future outputs of the PRNG!

e Since the eavesdropper knows the outputs of the PRNG, she knows
the keys and she can eavesdrop, regardless of encryption strength.

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

24

PRNGS (2)

e Most OS’s nowadays have built-in cryptographic random number gen-
erators for key generation. On UNIX systems:

"> hexdump /dev/random
0000000 d938 ch3d e578 7525 292d 68e3 Obd6 16c4
0000010 9cbb d6dc c662 9e5b c326 501b [...]

e The randomness is contained in a random state (or pool) and it is con-
stantly stirred by events that the operating system gathers: mouse and
keyboard inputs, interrupt timings, network events etc. Cryptographic
hash functions are used to mix the pool (SHA-1 on Linux).

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

25

A Simple PRNG Based on a Hash Function

Stir new input data to state:
State = H(State | counter++ | new input data)

Extract randomness:
Output = H (State | counter++)

.. of course it is good to remember ..

“Anyone who considers arithmetical methods of producing random digits
IS, of course, in a state of sin.” — John von Neumann (1951)

.. and to use RNGs if available!

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

26

Digital Signatures

When signing a message using a public key digital signature algorithm,
it IS not necessary to sign the message itself. It is sufficient to sign a

cryptographic hash (message digest) of the message.

Signing:
Signature = Sign(SHA-1(Message), Private Key)

Verifying:
Verify(SHA-1(Message), Signature, Public Key) = OK/FAIL

Note; signature algorithm doesn’t even need the message; only its hash is
sufficient. More on this in the next lecture..

T-79.159 Cryptography and Data Security, 05.02.2003 Lecture 4: Hashes and Message Digests,

Markku-Juhani O. Saarinen

27

