Reminder: Communication Model

\[C = E_K(M) \]

\[M = E_K^{-1}(E_K(M)) \]

Alice
Sender

Bob
Receiver

Eve
Adversary

Cipher, Encryption
Inverse cipher, Decryption

Public channel
Private channel

Preshared key
Reminder: Block Ciphers

- Usually a permutation $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$

- n is the block length, k is the key length

- Exhaustively searching k-bit keys takes 2^k time units

- Storing sufficient amount of plaintext-ciphertext pairs takes 2^n memory units. Birthday attack: $2^{n/2}$ memory units sufficient

- Recommendations: key $k \geq 80$ bits

- Recommendations: block $n \geq 128$ bits
Block cipher modes: Motivation

- A fixed block cipher work with a fixed block length
- One needs to encrypt arbitrary long messages
- Approach 1: design a new block cipher for every block length
- Must do new security evaluation for every cipher
Block cipher modes: Motivation

- Approach 2 (block cipher modes): use a block cipher E in an higher level protocol Π

- Hopefully can do a security reduction: if E is secure then Π is secure

- Modus ponens: If A and $A \Rightarrow B$ then B

- For this, one must use block cipher modes
ECB: Electronic Codebook

Simplest mode! (Also, already seen in the first lecture)
Insecurity of ECB

• If $y_i = y_j$ for two different ciphertext blocks then we know that $x_i = x_j$. Works also across different messages

★ Simplifies statistical analysis (see slides 30-31 of Lecture 1)

★ Makes it possible to spot repetitions (“Attack!”)

★ Absolutely no authentication: swapping two ciphertext blocks corresponds to swapping to two plaintext blocks

★ Most amusing: visual cryptanalysis
Low-Intelligence ECB Cryptanalysis

Give her a banana, and she will decrypt it...

T-79.159 Cryptography and Data Security, 29.01.2003

Lecture 3: Modes of Operation, Helger Lipmaa
CBC: Cipher Block Chaining

\[y_i = E_K(y_{i-1} \oplus x_i), \text{ and } iv \text{ is random (unpredictable)} \]

Think about how to decrypt!

T-79.159 Cryptography and Data Security, 29.01.2003 Lecture 3: Modes of Operation, Helger Lipmaa
Why CBC might be a good mode?

- If iv is chosen randomly then the same message block will have different corresponding ciphertext block with a high probability.

- Thus, no “recognition” and “banana” attacks.

- If E is pseudorandom and iv is randomly chosen, then already the first ciphertext block looks random, and this randomness carries over to the next ciphertext blocks.

- No authentication (still), but this is also not the goal.
Stream cipher(!): First generate a key stream \((b_i)\) from \(iv\) by using a block cipher, then compute \(y_i = x_i \oplus b_i\)
Why OFB is better than ECB, CBC?

- The same reasons as for CBC for being better than ECB

 + Keystream can be generated in advance
 - “lunchtime” encryption
 - Online one only must do XOR-s

 + Plaintext length can be arbitrary (in CBC, it must divide by n)
CTR: Counter Mode

As well as OFB, CTR mode is a stream cipher
Why CTR is better than ECB, CBC, OFB?

• The same reasons as for OFB for being better than ECB or CBC

+ Keystream generation can be parallelized

 ★ Encryption and decryption can be fully parallelized

• With CTR you do not have to implement the decryption routine

• With CTR you can encrypt or decrypt in a random-access fashion
Note on authentication

- OFB and CBC modes are stream ciphers

- They have the same weakness as the common stream ciphers: by changing some ciphertext bits we introduce known changes to the plaintext bits

- Thus, weaker authentication

- However, this is sloppy thinking! Also CBC does not provide full authentication (it’s only “somewhat” less manipulable)

- For full authentication, one must use proper authentication primitives
• This is not a goal of the (encryption) mode!
Note on error-correction

• If by some reason, a few bits of the ciphertext are changed, one would still like to be able to recover “most of the plaintext”

• Possible in OFB and CTR (as well as in common stream ciphers), since only the ith plaintext bit depends on the ith ciphertext bits. Not possible in CBC

• Sloppy thinking again in most situations. One can use proper error-correction codes to protect against induced errors

• This is not a goal of the (encryption) mode!
Block cipher modes: Goals

- Recall that a block cipher E is a family of permutations on short blocks. In particular, E_k is deterministic for every key.

- This is not sufficient in real life: We need to encrypt arbitrary long messages, and we need to have randomness.
 - Otherwise one can simply detect whether two plaintexts are equal ("banana attacks").

- Block cipher mode is an example of real-life cryptosystems.

- We can encrypt long messages, and IV/ctr takes care of randomness.
Block cipher modes: Security

- CTR, OFB and CBC modes are provably secure if used with provably secure ciphers

 ➷ Show why CTR together with shift cipher is weak!

- AES, DES, ... are not provably secure: they are only secure against known attacks

- Reduction works backwards: If \(\neg B \) and \(A \Rightarrow B \) then \(\neg A \)

- E.g.: an attack against CTR-AES also breaks AES
Provable security and reductionism

- To define what is a primitive (block cipher, mode, ...), one must define its syntax and security.

- The definition of security is actually a definition of what constitutes an attack against this primitive.

- The primitive is said to be \((t, \varepsilon)\)-secure if no algorithm that takes \(\leq t\) steps can break the primitive with probability \(\geq \varepsilon\).
Reminder: Message authentication codes (MACs)

- Alice and Bob share a common private key K

- Symmetric authentication: Based on $\text{MAC}_K(M)$, If Alice knows she has not sent M she knows that M was sent by Bob

- Provides no non-repudiation, but only data authentication

- Usually much-much faster than signature schemes
Security requirements

- It is computationally hard to produce a MAC corresponding to a message for which the corresponding tag has not yet been seen, without knowledge of the private key.

- We are not going into details, but formally this could be required to hold after chosen cipher-text etc attacks.
Authentication mode: CBC MAC

As CBC, but only output the last block of ciphertext as the tag
Authentication mode: CBC MAC

- Block cipher with block length n

- Only secure if encrypting messages of fixed length mn

- Must use a different key for every m

- Recent constructions (Bellare, Rogaway, Iwata et al) are more complicated but stay secure when MAC input has arbitrary length

- NB! One must use a different key for CBCMAC and for the used encryption mode
Quest for an Authenticated Encryption Mode

- CBC + CBCMAC, CTR + CBCMAC, ... provide authentication and encryption, but
 - They need two different keys
 - They are twice slower than either CBC or CBCMAC by itself

- CBC with various checksums (wrong)

- PCBC in Kerberos (wrong)
Quest for an Authenticated Encryption Mode

- Additional modes by Gligor, Donescu (2001)

- ... and OCB by Rogaway (2001)

- OCB is the most practical one, although difference in efficiency is not major

- All modes are covered by patents, and thus fast standardization cannot be expected
Authenticated encryption mode: OCB

\[
\begin{align*}
Chks &= x_1 \oplus x_2 \oplus \cdots \oplus x_{m-1} \oplus (x_m \| 0^*) \oplus \text{Pad} \\
L &= E_K(0)
\end{align*}
\]

As CBC, but only output the last block of ciphertext as the tag
Reminder: Product Ciphers

Idea: combine two weak ciphers to get a stronger cipher

Tweak: Use the SAME cipher but with different keys

Yet another thing you can do with block ciphers
Multiple Encryption

- Idea: using the same cipher with possible different keys and multiple times could give increase in security

- In particular, possibly increases the effective key size

- Critical in the case of DES that has a key of $k = 56$ bits

- Does k-fold DES encryption with k different keys increase the effective key size k times?

- Not necessarily... even if E is a random permutation!
Double Encryption: Attack

Man-In-The-Middle Attack:

- Assume attacker has a few known plaintext-ciphertext pairs \((x_i, y_i)\), where \(y_i = E_{K_2}(E_{K_1}(x_i))\)

- Do for every possible key \(K\):
 - Let \(A[K] := (K, E_K(x_1))\), and \(B[K] := (K, D_K(y_1))\)

- Sort arrays \(A\) and \(B\) on the values of the second coordinates

- Search both arrays for rows that match in second coordinate, \((K'_1, z), (K'_2, z)\). For every such row we know that \(y_1 = E_{K'_2}(E_{K'_1}(x_1))\)

 - To eliminate wrong keys, test for every such \((K'_1, K'_2)\) that \(y_i = E_{K'_2}(E_{K'_1}(x_i))\) for \(i = 2 \ldots\)
Double Encryption: Attack Analysis

• With an ideal cipher with DES’s parameters \((k = 56, n = 64)\), only every 1/256th plaintext is present in table \(A\), and in table \(B\). Only every 1/2\(^{16}\)th plaintext (\(2^{48}\) plaintexts) is present in both tables. Therefore, there are \(2^{48}\) candidate keys \((K'_1, K'_2)\)

• For every candidate key \((K'_1, K'_2)\), \(\Pr[y_i = E_{K'_2}(E_{K'_1}(x_i))] = 2^{-64}\) for \(i > 1\)

• Thus testing for a single additional pair \((x_2, y_2)\) should be sufficient with a h.p. to pick one a single candidate key
Triple Encryption “EDE”

Two common modes: 3EDE, 2EDE. In 3EDE, all keys are different. In 2EDE, $K_3 = K_1$. Best known are 3EDE-DES and 2EDE-DES.
Why 3EDE?

- Best attack: requires 4 KPC (known plain/ciphertext) pairs, 2^{112} time units and 2^{56} memory. Impractical!

- Security: 2EE-DES can be broken in $\approx 2^{56}$ space and $\approx 56 \cdot 2^{56}$ time. Practical

- Security: 2EDE-DES can be broken in 2^x KPC pairs, 2^{120-x} time and 2^x words of memory. “Almost practical” with $x \approx 50$

- Efficiency: applying more than 3 rounds gives additional security (but why?), and makes cipher less secure
Why 3EDE?

• EDE is better than EEE since fixing $K := K_1 = K_2 = K_3$ results in

 $y = E_K(D_K(E_K(x))) = E_K(x)$ (usual DES)

• 3EDE-DES (commonly known as 3DES) can be seen as a new cipher that is

 ★ 168-bit key

 ★ three times slower than DES,

 ★ with effective key length ≈ 112

 ★ reusing DES’s hardware/software implementations

 ★ 3DES’s security can be reduced to the security of DES
DESX

- Assume we have two keys, a 64-bit key K_1 and 56-bit key K_2

- Define $\text{DESX}_{K_1,K_2}(x) := \text{DESX}_{K_1}(x \oplus K_2) \oplus K_2$

- Exhaustive key search: 2^{120} time units

- Provable security assuming DES is secure

- Some loss due to differential/linear cryptanalysis. Breakable in $\approx 2^{89}$ steps. Still impractical

- Only marginally slower than DES