1. We shall use the following model for computational cost of breaking a cipher with a 64-bit key:

- A year 2003 computer node that costs 1000 EUR can test 10^7 keys per second.
- Moore’s “law” will continue to hold; the amount of computing power that can be purchased with 1000 EUR will double every 18 months (exponential growth).
- Significant advances in theoretical cryptanalysis will not occur.

Estimate the time required to break the key (on average case) by the following groups:

a) National Security Agency (http://www.nsa.gov). 5 000 000 000 EUR annual budget for hardware.
b) CSC Oy (http://www.csc.fi), 5 000 000 EUR annual budget for hardware.
c) HUT Krypto Group (http://www.tcs.hut.fi/Research/Crypto/). 5 000 EUR annual budget for hardware.

2. Counter mode (CTR) essentially turns a block cipher into a stream cipher cipher (keystream generator). We shall use a zero IV (initial value):

Encryption:

\[
E_K(0) \oplus P_0 = C_0 \\
E_K(1) \oplus P_1 = C_1 \\
\ldots \\
E_K(n) \oplus P_n = C_n
\]
Decryption:

\[E_K(0) \oplus C_0 = P_0 \]
\[E_K(1) \oplus C_1 = P_1 \]
\[\vdots \]
\[E_K(n) \oplus C_n = P_n \]

Here \(K \) is the secret key, \(P_i \) is the plaintext block and \(C_i \) is the corresponding ciphertext block.

\(2^{40} \) bits of keystream is available. Is there any way of distinguishing the keystream from a random sequence without an exhaustive key search?

3. Count the number of different 8-bit block ciphers with an 8-bit key.

Definition. An \(n \)-bit block cipher is a function \(E : V_n \times \mathcal{K} \rightarrow V_n \), such that for each key \(K \in \mathcal{K} \), \(E(K, P) \) is an invertible mapping (the encryption function for \(K \)) from \(V_n \) to \(V_n \), written \(E_K(P) \). The inverse mapping is the decryption function, denoted \(D_K(C) \). \(C = E_K(P) \) denotes that ciphertext \(C \) results from encrypting plaintext \(P \) under \(K \).

Hints: Count ALL variants, good and bad – even identity transform is included. In this case the key space size is \(|\mathcal{K}| = 2^8 \). It might be helpful to think about how much memory would be required to store a general block cipher as a table.

4. Given an RSA public modulus \(n = p \cdot q \), public exponent \(e \) and the private exponent \(d = e^{-1} \mod (p-1)(q-1) \), find factors \(p \) and \(q \).

\[n = 65837663925249858325414050808539188031 \]
\[e = 17 \]
\[d = 154912150412352607810683732878343115217 \]

Testing the variables for correctness (example):

\[123456789e \equiv 62733577232488045926157258337023432524 \text{ (mod } n) \]
\[62733577232488045926157258337023432524d \equiv 123456789 \text{ (mod } n) \]

Try to find an algebraic solution to the problem that utilizes the knowledge of the private (“secret”) parameter \(d \) and that is faster than direct factorization of \(n \).

Hints: Mathematica and Maple directly support computations on large integers, as do certain programming languages (e.g. BC, Java and Python). Support for C and C++ can be added using the GNU Multiprecision library \texttt{http://swox.com/gmp/}.

5. Find a collision for the first 48 bits (six bytes) of the SHA-1 hash function output. Include a detailed description of the method that you used (with source code if possible).

Example (using hexadecimal notation):

\footnote{Adopted from Definition 7.1 (p. 224) in Menezes et al, Handbook of Applied Cryptography, CRC Press 1996.}
SHA1(77 28 CC 1E 73 0A) =
51 D2 E8 D0 79 11 46 54 A6 00 A7 44 36 2F 17 97 FF E9 93 A9

SHA1(13 DA FC 00 E4 36) =
51 D2 E8 D0 79 11 D8 A8 46 FE 04 79 30 48 A0 6E 50 84 74 FF

Since the first 48 bits of the 160-bit message digest are the same (51 D2 E8 D0 79 11), this is a collision in the sense that is required by the exercise. Note that collision search will take a long time unless you use a $O(\sqrt{n})$ algorithm.

Hints: A reasonable C-language implementation of a collision finding algorithm runs for about one minute on a 1.4 GHz Athlon; Java implementation running on a slow computer may require several hours! Test your algorithm on a smaller problem first (e.g. 32 bits).

More information regarding SHA-1 is available from:

- RFC 3174 contains an implementation of SHA-1: http://www.ietf.org/rfc/rfc3174.txt?number=3174
- The OpenSSL library contains an implementation as well: http://www.openssl.org