
AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Representing Normal Programs
with Clauses

Tomi Janhunen

Tomi.Janhunen@hut.fi

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

August 26, 2004

ECAI’04 / T. Janhunen – 0/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

MOTIVATION

Our goal is to combine the knowledge
representation capabilities of normal logic
programs with the efficiency of SAT solvers.

Normal program P answer set
↓

Set of clauses S ↑

↓

SAT solver → model

To realize this setting, we present a polynomial
and faithful but non-modular translation.

ECAI’04 / T. Janhunen – 1/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

OUTLINE

➀ Terms and Definitions

➁ Characterizing Stability

➂ Clausal Representation

➃ Experiments

➄ Discussion

ECAI’04 / T. Janhunen – 2/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

➀ TERMS AND DEFINITIONS

A rule r is an expression of the form

h← b1, . . . , bn,∼c1, . . . ,∼cm.

We use the following notations for a rule r:

H(r) = h (head)
B(r) = {b1, . . . , bn,∼c1, . . . ,∼cm} (body)

B+(r) = {b1, . . . , bn}

B−(r) = {c1, . . . , cm}

We define normal logic programs, or normal
programs for short, as sets of rules.

ECAI’04 / T. Janhunen – 3/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Syntactic Restrictions

We distinguish the following special cases:
— positive rules: h← b1, . . . , bn

— atomic rules: h← ∼c1, . . . ,∼cm

— strictly unary rules: h← b,∼c1, . . . ,∼cm

— strictly binary rules: h← b1, b2,∼c1, . . . ,∼cm

We extend these conditions for sets of rules:

— positive programs: ∀r ∈ P : |B−(r)| = 0
— atomic programs: ∀r ∈ P : |B+(r)| = 0
— unary programs: ∀r ∈ P : |B+(r)| ≤ 1
— binary programs: ∀r ∈ P : |B+(r)| ≤ 2

ECAI’04 / T. Janhunen – 4/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Least Models

If P is a positive normal program, then

1. P has a unique minimal model, i.e. the least
model LM(P) of P ;

2. LM(P) = TP ↑ ω = lfp(TP) where the
immediately true operator TP is defined by

TP (A) = {H(r) | r ∈ P and B+(r) ⊆ A};

and

3. lfp(TP) = TP ↑ i for some i ∈ N, if P is finite.

ECAI’04 / T. Janhunen – 5/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Level Numbers

Definition: For each atom b ∈ LM(P), the level
number lev(b) of b is the least number n such that
b ∈ TP ↑ n− TP ↑ (n− 1).

Example: Consider a positive normal program

P = {r1 = a←; r2 = a← b; r3 = b← a}

with LM(P) = {a, b} and the corresponding level

numbers lev(a) = 1 and lev(b) = 2.

ECAI’04 / T. Janhunen – 6/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Stable and Supported Models

Definition: Given an interpretation M , the
Gelfond-Lifschitz reduct

PM = {r+ | r ∈ P and B−(r) ∩M = ∅}

where r+ is defined as H(r)← B+(r) for r ∈ P .

Definition: For a normal program P , an
interpretation M ⊆ At(P) is

1. a stable model of P ⇐⇒ M = LM(PM), and

2. a supported model of P ⇐⇒ M = TPM (M).

ECAI’04 / T. Janhunen – 7/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Stable and Supported Models

Example: The normal program
P = {a← b; b← a} has two supported models
M1 = ∅ and M2 = {a, b}, but only M1 is stable, as
LM(PM1) = LM(P) = ∅ = M1 and
LM(PM2) = LM(P) = ∅ 6= M2.

Some important properties:

1. Stable models are also supported models.

2. Stable and supported models coincide for
atomic programs.

3. Clark’s completion captures supported models.

ECAI’04 / T. Janhunen – 8/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

➁ CHARACTERIZING STABILITY

Definition: Let M be a supported model of a
normal program P . A level numbering w.r.t. M is
a function # : M ∪ SR(P,M)→ N such that

1. for all a ∈M ,
#a = min{#r | r ∈ SR(P,M) and a = H(r)} and

2. for all r ∈ SR(P,M),
#r = max{#b | b ∈ B+(r)}+ 1

where SR(P,M) = {r ∈ P |M |= B(r)}.

We define max ∅ = 0 to cover rules r with B+(r) = ∅.

ECAI’04 / T. Janhunen – 9/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Capturing Stable Models

Let M be a supported model of P .

Proposition: If # is a level numbering w.r.t. M ,
then it is unique.

Theorem: M is a stable model of P

⇐⇒ there is a level numbering # w.r.t. M .

ECAI’04 / T. Janhunen – 10/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Capturing Stable Models

Example: Recall the supported models of
P = {r1, r2} with r1 = a← b and r2 = b← a:
M1 = ∅ and M2 = {a, b}.

Since M1 ∪ SR(P,M1) = ∅, M1 is trivially stable.

For M2, the domain M2 ∪ SR(P,M2) = M2 ∪ P

and the set of equations

#a = #r1, #r1 = #b + 1,
#b = #r2, #r2 = #a + 1

has no solution. Thus M2 is not stable.

ECAI’04 / T. Janhunen – 11/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

➂ CLAUSAL REPRESENTATION

We use an atomic normal program TrAT(P) =

TrSUPP(P) ∪ TrCTR(P) ∪ TrMIN(P) ∪ TrMAX(P)

as an intermediary representation when
translating a normal program P into a set of
clauses TrCL(TrAT(P)).

Level numbers have to be captured using
binary counters which are represented by
vectors of propositional atoms.

Certain primitives have to be represented:
SEL(c), NXT(c, d), FIX(c), LT(c, d), EQ(c, d).

ECAI’04 / T. Janhunen – 12/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Optimizations

The level numbers associated with rules can be
totally omitted, if all non-binary rules r with
|B+(r)| > 2 are translated away.

A normal logic program P is partitioned into its
strongly connected components C1, . . . , Cn on
the basis of positive dependencies.

No counters are needed, if |H(Ci)| = 1 holds.

The number of bits ∇Ci = dlog2(|H(Ci)|+ 2)e for
other strongly connected components Ci.

Fixed translation schemes can be devised for
atomic, strictly unary, and strictly binary rules.

ECAI’04 / T. Janhunen – 13/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Example

For P = {a← b; b← a}, the translation TrAT(P)
contains the following rules for a:

b← ∼bt(r2); bt(r2)← ∼bt(r2); bt(r2)← ∼a;

a← ∼a; x← ∼x,∼a,∼min(a);

x← ∼x,∼bt(r2),∼lt(nxt(a), ctr(b))1; and
min(b)← ∼bt(r2),∼eq(nxt(a), ctr(b))

in addition to four subprograms for choosing the
values of ctr(a) and nxt(a) as well as comparing the
latter with ctr(b). The rules for b are symmetric.

The only stable model is N = {a, b, bt(r1), bt(r2)}.

ECAI’04 / T. Janhunen – 14/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

➃ EXPERIMENTS

We have implemented TrAT and TrCL as
respective translators LP2ATOMIC and LP2SAT
to be used together with LPARSE.

Our experiments were run on a 1.67 GHz CPU
with 1GB memory.

In our benchmark, we compute all subgraphs of
Dn whose all vertices are mutually reachable.

Here Dn is a directed graph with n vertices and n2−n

edges: En = {〈i, j〉 | 0 < i ≤ n, 0 < j ≤ n, i 6= j}.

ECAI’04 / T. Janhunen – 15/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Reachability Benchmark

vertex(1..n).

in(V1,V2) :- not out(V1,V2),

vertex(V1;V2), V1!=V2.

out(V1,V2) :- not in(V1,V2),

vertex(V1;V2), V1!=V2.

reach(V,V) :- vertex(V).

reach(V1,V3) :- in(V1,V2), reach(V2,V3),

vertex(V1;V2;V3), V1!=V2, V1!=V3.

:- not reach(V1,V2), vertex(V1;V2).

☞ The order in which the reachability of nodes

inferred cannot be determined beforehand.

ECAI’04 / T. Janhunen – 16/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Computing All Solutions

Number of Vertices 1 2 3 4 5
SMODELS 0.004 0.003 0.003 0.033 12
CMODELS 0.031 0.030 0.124 293 -
LP2ATOMIC+SMODELS 0.004 0.008 0.013 0.393 353
LP2SAT+CHAFF 0.011 0.009 0.023 1.670 -
LP2SAT+RELSAT 0.004 0.005 0.018 0.657 1879
WF+LP2SAT+RELSAT 0.009 0.013 0.018 0.562 1598
Models 1 1 18 1606 565080
SCCs with |H(C)| > 1 0 0 3 4 5
Rules (LPARSE) 3 14 39 84 155
Rules (LP2ATOMIC) 3 18 240 664 1920
Clauses (LP2SAT) 4 36 818 2386 7642
Clauses (WF+LP2SAT) 2 10 553 1677 5971

ECAI’04 / T. Janhunen – 17/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Computing Only One Solution

Number of Vertices 8 9 10
SMODELS 0.009 0.013 0.022
CMODELS 0.046 0.042 0.055
LP2ATOMIC+SMODELS >104 >104 >104

LP2SAT+CHAFF 0.771 32.6 254
LP2SAT+RELSAT 2.51 >104 >104

WF+LP2SAT+RELSAT 2.80 4830 >104

ASSAT 0.023 0.028 0.037

ECAI’04 / T. Janhunen – 18/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

➄ DISCUSSION

The new characterization of stable models is
based on canonical level numberings.

The translation function TrAT ◦ TrCL has
distinctive properties:

it covers all finite normal programs P ,
a bijective relationship of models is obtained,
the Herbrand base At(P) is preserved,
the length ||TrCL(TrAT(P))|| is of order
||P || × log2 |At(P)|, and
incremental updating is not needed.

ECAI’04 / T. Janhunen – 19/20

AB HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

Conclusions and Future Work

Various kinds of closures of relations, such as
transitive closure, can be properly captured with
classical models.

Our approach is competitive against other
SAT-solver-based approaches when the task is
to compute all stable models.

Further optimizations should be pursued for in
order to really compete with SMODELS.

In the future, we intend to study techniques to
reduce the number of binary counters and the
numbers of bits involved in them.

ECAI’04 / T. Janhunen – 20/20

	MOTIVATION
	OUTLINE
	ding {192} TERMS AND DEFINITIONS
	Syntactic Restrictions
	Least Models
	Level Numbers
	Stable and Supported Models
	Stable and Supported Models
	ding {193} CHARACTERIZING STABILITY
	Capturing Stable Models
	Capturing Stable Models
	ding {194} CLAUSAL REPRESENTATION
	Optimizations
	Example
	ding {195} EXPERIMENTS
	Reachability Benchmark
	Computing All Solutions
	Computing Only One Solution
	ding {196} DISCUSSION
	Conclusions and Future Work

