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MOTIVATION

m Our goal is to combine the knowledge
representation capabilities of normal logic
programs with the efficiency of SAT solvers.

Normal program P answer set
!
Set of clauses S T
1
SAT solver — model

m To realize this setting, we present a polynomial
ﬁ and faithful but non-modular translation.
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[1 TERMS AND DEFINITIONS

m A rule r is an expression of the form
h — bl, .
m We use the following notations for a rule r:

H(r)=h (head)

7bn7 ~Clyeey G

B(r) ={by,...,by,~c1,...,~c,} (body)
B*(r) = {by,...,b,}
B7(r) ={c1,...,cn}

m We define normal logic programs, or normal
programs for short, as sets of rules.
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Syntactic Restrictions

m We distinguish the following special cases:
— positive rules: h < by, ..., b,
— atomic rules: h <« ~cq,...,~cy,
— strictly unary rules: h < b, ~cy,...,~c,,
— strictly binary rules: h « by, by, ~cq, ..., ~cy,,

m We extend these conditions for sets of rules:

— positive programs: Vr € P : [B~(r)| =0
— atomic programs: Vr € P: BT (r)| =0
— unary programs: Vr e P:|Bt(r)| <1
— binary programs: Vr € P: |BT(r)| <2
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Least Models

If P is a positive normal program, then

1. P has a unique minimal model, i.e. the least
model LM(P) of P;

2. LM(P) =Tp T w = 1fp(Tp) where the
immediately true operator Tp is defined by

Tp(A) = {H(r) | r € P and B*(r) C A};

and
3. Ifp(Tp) =Tp T iforsomei € N, if P is finite.
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Level Numbers

Definition: For each atom b € LM(P), the level
number lev(b) of b is the least number n such that
beTpTn—-—TpT(n—-1).

Example: Consider a positive normal program
P={ri=a+«; rp=a«b; r3=>b+« a}

with LM(P) = {a,b} and the corresponding leve
numbers lev(a) = 1 and lev(b) = 2.
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Stable and Supported Models

Definition: Given an interpretation M, the
Gelfond-Lifschitz reduct

PY =0t |rcePandB (r)Nn M =0}
where r* is defined as H(r) < B*(r) for r € P.

Definition: For a normal program P, an
interpretation M C At(P) is
1. astable model of P < M = LM(PM), and
2. asupported model of P <= M = Tpu(M).

\ HELSINKI UNIVERSITY OF TECHNOLOGY
. . .



Stable and Supported Models

Example: The normal program

P ={a < b; b+« a} has two supported models
= () and M, = {a, b}, but only M is stable, as

LM(PM) = LM(P) = ¢ = M, and

LM(PM2) = LM(P) = 0 # M,.

Some important properties:

1. Stable models are also supported models.

2. Stable and supported models coincide for
atomic programs.

% Clark’s completlon captures supported models.
\ﬁ |

ECAI’04/T. Janhunen — 8/20

[1 CHARACTERIZING STABILITY

Definition: Let M be a supported model of a
normal program P. A level numbering w.r.t. M is
a function # : M U SR(P, M) — N such that

1. foralla € M,
#a = min{#r | r € SR(P, M) and a = H(r)} and

2. forall r € SR(P, M),
#r =max{#b |be B (r)} +1

where SR(P,M) ={re P| M = B(r)}.

We define max () = 0 to cover rules r with B™(r) = 0.

\ HELSINKI UNIVERSITY OF TECHNOLOGY
o N

g

Capturing Stable Models

Let M be a supported model of P.

Proposition: If # is a level numbering w.r.t. M,
then it is unique.

Theorem: M is a stable model of P
<= there is a level numbering # w.r.t. M.
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Capturing Stable Models

Example: Recall the supported models of
P = {Tl,TQ}With rr=a<bandry=>b« a:
= ( and M, = {a,b}.

m Since M; USR(P, My) =0, M, is trivially stable.

m For Ms, the domain M, U SR(P, My) = My U P
and the set of equations

#a:#rl,#le#b+1,
#b = H#ry, #ro =#a+1

% has no solution. Thus M, is not stable.
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[] CLAUSAL REPRESENTATION

m We use an atomic normal program Trap(P) =
TrSUPP(P) U TI’CTR(P) U TI"MIN(P) U TI‘MA)((P)

as an intermediary representation when
translating a normal program P into a set of
clauses Trep (Trar(P)).

m Level numbers have to be captured using
binary counters which are represented by
vectors of propositional atoms.

m Certain primitives have to be represented:
% SEL(c), NXT(c,d), FIX(c), LT (¢, d), EQ(c,d).
\4q
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Optimizations

m The level numbers associated with rules can be
totally omitted, if all non-binary rules r with
IB*(r)| > 2 are translated away.

m A normal logic program P is partitioned into its
strongly connected components Ci,...,C, on
the basis of positive dependencies.

= No counters are needed, if |H(C;)| = 1 holds.

m The number of bits VC; = [log,(|H(C;)| + 2)] for
other strongly connected components C;.

m Fixed translation schemes can be devised for
% atomic, strictly unary, and strictly binary rules.

HELSINKI UNIVERSITY OF TECHNOLOGY
o N . .

Example

For P = {a < b; b« a}, the translation Trar(P)
contains the following rules for a:
b« ~bt(ry); bt(re) < ~bt(ry); bt(ry) «— ~a;
3« ~a; X<« ~x,~a,~min(a);
X «— ~x, ~bt(ry), ~It(nxt(a), ctr(b));; and
min(b) < ~bt(ry), ~eq(nxt(a), ctr(b))
in addition to four subprograms for choosing the

values of ctr(a) and nxt(a) as well as comparing the
latter with ctr(b). The rules for b are symmetric.

The only stable model is N = {3, b, bt(r{), bt(r)}.
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[ EXPERIMENTS

m We have implemented Trar and Treg, as
respective translators LP2ATOMIC and LP2SAT
to be used together with LPARSE.

m Our experiments were run on a 1.67 GHz CPU
with 1GB memory.

m In our benchmark, we compute all subgraphs o
D,, whose all vertices are mutually reachabile.

Here D,, is a directed graph with » vertices and n?—1
edges: B, = {(i,j) [0 <i<n, 0<j<mn,i#j}

d
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Reachability Benchmark

vertex(1l..n).

in(Vi,V2) :- not out(Vi, V2),

vertex(Vy; V2),

out (V1,V2) :- not in(V1 V2),

vertex(Vi; V2),

reach(V,V) :- vertex(V).

reach(Vi, V3) :- in(Vi, V2),
vertex(V1; V2; V3),

V1I=V2.

V11 =V2.

:- not reach(V1,V2), vertex(V1; V2).

reach(Vvz2, Vv3),
V1l =Vv2, V1!=V3.

|:| The order in which the reachability of nodes
inferred cannot be determined beforehand.
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Number of Vertices 1 2 3 4 5
SMODELS 0.004 0.003 0.003 0.033 12
CMODELS 0.031 0.030 0.124 293 -
LP2ATOMIC+SMODELS 0.004 0.008 0.013 0.393 353
LP2SAT+CHAFF 0.011 0.009 0.023 1.670 -
LP2SAT+RELSAT 0.004 0.005 0.018 0.657 1879
WF+LP2SAT+RELSAT 0.009 0.013 0.018 0.562 1598
Models 1 1 18 1606 565080
SCCs with [H(C)| > 1 0 0 3 4 5
Rules (LPARSE) 3 14 39 84 155
Rules (LP2ATOMIC) 3 18 240 664 1920
Clauses (LP2SAT) 4 36 818 2386 7642
%Iauses (WF+LP2SAT) 2 10 553 1677 5971
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Computing Only One Solution

Number of Vertices 8 9 10

SMODELS 0.009 0.013 0.022
CMODELS 0.046 0.042 0.055
LP2ATOMIC+SMODELS >10* >10* >10%
LP2SAT+CHAFF 0.771 32.6 254
LP2SAT+RELSAT 251 >10* >10°
WF+LP2SAT+RELSAT 2.80 4830 >10%
ASSAT 0.023 0.028 0.037
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[J DISCUSSION

m The new characterization of stable models is
based on canonical level numberings.

m The translation function Trat o Trcp, has
distinctive properties:
= it covers all finite normal programs P,
= a bijective relationship of models is obtained
= the Herbrand base At(P) is preserved,

m the length || Trer (Trar(P))|| is of order
| P|| x log, |At(P)|, and
= incremental updating is not needed.
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Conclusions and Future Work

m Various kinds of closures of relations, such as
transitive closure, can be properly captured with
classical models.

m Our approach is competitive against other
SAT-solver-based approaches when the task is
to compute all stable models.

m Further optimizations should be pursued for in
order to really compete with SMODELS.

m In the future, we intend to study techniques to
reduce the number of binary counters and the
numbers of bits involved in them.

..
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