T-79.154 Syksy 2004
Logiikka tietotekniikassa: erityiskysymyksia II
Laskuharjoitus 9

Ratkaisut
1. %% vacuum.lp -- a domain description file for planning in the vacuum
oo domain.

%% predicates:

% at(V, L, I) -- a vacuum cleaner V is at a place L at the time step
b I.
% clean(L, I) -- a location L is clean at a time step I.

b

%% Actions:

% move(V, F, T, I) -- move the vacuum cleaner V from a place F to a

YA place T at a time step I.

yA

% suction(V, L, I) -- a vacuum cleaner V cleans the location L at time
b step I.

%The basic encoding of the actions is such that the preconditions of an
%haction imply that the action can be performed.
b
A { action } :- preconditions.
b
% An action implies its effects.
b
/A effects :- action.
b
%% Action: SUCTION
b
% Preconditions: location not clean, cleaner at the same room:
{ suction(Vv, L, I) } :-
vacuum (V) ,
location(L),
time (1),
at(v, L, I),
not clean(L, I).

% Effects: room clean.



clean(L,I+1) :-
vacuum (V) ,
location(L),
time (1),
suction(V,L,I).

%% Action: MOVE

% Preconditions: vacuum cleaner at source, destination adjacent:
{ move(V, F, T, I) } :-

vacuum (V) ,

next_to(F, T),

time (1),

at(V, F, I).

% Effects: cleaner at the destination
at(V, T, I+1) :-

vacuum (V) ,

next_to(F, T),

time (1),

move(V, F, T, I).

% Moves is an auxiliary predicate that is true if a cleaner changes
% its location in any way during a time step. Having this predicate
% makes defining the frame axioms easier.
moves(V, I) :-

vacuum (V) ,

next_to(F, T),

time (1),

move(V, F, T, I).

%% Frame axioms:

% A vacuum cleaner may not be in two places at the same time:
:— 2 { at(v, L, I) : location(L) 7,
vacuum(V) ,
time(I).

% A vacuum cleaner stays at the same spot if it doesn’t move:
at(Vv, L, I+1) :-
vacuum(V) ,



b

location(L),
time(I),

at(v, L, I),

not moves(V, I).

A once cleaned room stays cleaned

clean(L, I+1) :-

location(L),
time (1),
clean(L, I).

%% Some domain facts:

%% We want to have n time steps.
time(1..n).

b

Desired goal state:

compute 1 { clean(L, n+1) : location(L) } .

. %% The idea of the grocery world is similar to the vacuum world. That
%% is, preconditions of an action imply that the action may be
%% performed and an action implies its effects:

b
b
b
b
b
b
b
b
b
b
b
b

b

{ action } :- preconditions.
effect :- action.

Since in this example we have more than two different action types,
we have to be more careful about weeding out conflicting actions
(such as paying and moving at the same time). The simplest way to do
it is to add all preconditions of an action also as its effects if
the action doesn’t specifically change it. For example, since the
action ’pick’ doesn’t change its precondition that the shopper has
to be at the same location as the picked item, we add as an explicit
effect for ’pick’ that the shopper stays at the same location.

First define the time and the end moment

time(1l..n).
const end_time = n+1.

%% Action: MOVE

b

Precondition: at source, destination adjacent:



{ move(F, T, I) } :-
next_to(F, T),
time (1),
at(F, I).

% Effect: at destination:
at(T, I+1) :-

next(F, T),

time (1),

move(F, T, I).

% Another auxiliary predicate for frame exioms:
moving(I) :-

next(F, T),

time(I),

move(F, T, I).

%% Action: PICK

% Preconditions: the picked item is in the shopping list, at the same
% location as shopper, and not yet picked:
{ pick(Item, I) } :-

in_list(Item),

time (1),

not has(Item, I),

not paid(I),

at (L, I),

located(Item, L).

% Effect: the item is in possession, we are at the same location:
has(Item, I+1) :-

in_list(Item),

time(I),

pick(Item, I).

at(L, I+1) :-
in_list(Item),
at(L, I),
time (1),
pick(Item, I).



%% Action: PAY

%% Preconditions: we are at the cashier and have not yet paid:
{ pay(D) } :-

located(cashier, L),

at(L, I),

not paid(I),

time(I).

% Effect: we have paid, stay at the same location
paid(I+1) :-

time(I),

pay(I).

at(L, I+1) :-
pay(I),
at(L, I),
located(cashier, L),
time(I).

%%% FRAME AXIOMS

% we may be only in one place at a time
:— 2 { at(L, I) : location(L) 1},
time(I).

% our position stays the same if we are not moving
at(L, I+1) :-

at(L, I),

location(L),

time(I),

not moving(I).

% we don’t drop picked items
has(Item, I+1) :-
has(Item, I),
in_list(Item),
time(I).

% once we pay we stay paid
paid(I+1) :-



paid(I),
time (I).



