
T-79.154 Syksy 2004
Logiikka tietotekniikassa: erityiskysymyksiä II
Laskuharjoitus 9
Ratkaisut

1. %% vacuum.lp -- a domain description file for planning in the vacuum

%% domain.

%% predicates:

% at(V, L, I) -- a vacuum cleaner V is at a place L at the time step

% I.

% clean(L, I) -- a location L is clean at a time step I.

%

%% Actions:

% move(V, F, T, I) -- move the vacuum cleaner V from a place F to a

% place T at a time step I.

%

% suction(V, L, I) -- a vacuum cleaner V cleans the location L at time

% step I.

%The basic encoding of the actions is such that the preconditions of an

%action imply that the action can be performed.

%

% { action } :- preconditions.

%

% An action implies its effects.

%

% effects :- action.

%

%% Action: SUCTION

%

% Preconditions: location not clean, cleaner at the same room:

{ suction(V, L, I) } :-

vacuum(V),

location(L),

time(I),

at(V, L, I),

not clean(L, I).

% Effects: room clean.

1



clean(L,I+1) :-

vacuum(V),

location(L),

time(I),

suction(V,L,I).

%% Action: MOVE

% Preconditions: vacuum cleaner at source, destination adjacent:

{ move(V, F, T, I) } :-

vacuum(V),

next_to(F, T),

time(I),

at(V, F, I).

% Effects: cleaner at the destination

at(V, T, I+1) :-

vacuum(V),

next_to(F, T),

time(I),

move(V, F, T, I).

% Moves is an auxiliary predicate that is true if a cleaner changes

% its location in any way during a time step. Having this predicate

% makes defining the frame axioms easier.

moves(V, I) :-

vacuum(V),

next_to(F, T),

time(I),

move(V, F, T, I).

%% Frame axioms:

% A vacuum cleaner may not be in two places at the same time:

:- 2 { at(V, L, I) : location(L) },

vacuum(V),

time(I).

% A vacuum cleaner stays at the same spot if it doesn’t move:

at(V, L, I+1) :-

vacuum(V),

2



location(L),

time(I),

at(V, L, I),

not moves(V, I).

% A once cleaned room stays cleaned

clean(L, I+1) :-

location(L),

time(I),

clean(L, I).

%% Some domain facts:

%% We want to have n time steps.

time(1..n).

% Desired goal state:

compute 1 { clean(L, n+1) : location(L) } .

2. %% The idea of the grocery world is similar to the vacuum world. That

%% is, preconditions of an action imply that the action may be

%% performed and an action implies its effects:

%

% { action } :- preconditions.

% effect :- action.

%

% Since in this example we have more than two different action types,

% we have to be more careful about weeding out conflicting actions

% (such as paying and moving at the same time). The simplest way to do

% it is to add all preconditions of an action also as its effects if

% the action doesn’t specifically change it. For example, since the

% action ’pick’ doesn’t change its precondition that the shopper has

% to be at the same location as the picked item, we add as an explicit

% effect for ’pick’ that the shopper stays at the same location.

% First define the time and the end moment

time(1..n).

const end_time = n+1.

%% Action: MOVE

% Precondition: at source, destination adjacent:

3



{ move(F, T, I) } :-

next_to(F, T),

time(I),

at(F, I).

% Effect: at destination:

at(T, I+1) :-

next(F, T),

time(I),

move(F, T, I).

% Another auxiliary predicate for frame exioms:

moving(I) :-

next(F, T),

time(I),

move(F, T, I).

%% Action: PICK

% Preconditions: the picked item is in the shopping list, at the same

% location as shopper, and not yet picked:

{ pick(Item, I) } :-

in_list(Item),

time(I),

not has(Item, I),

not paid(I),

at(L, I),

located(Item, L).

% Effect: the item is in possession, we are at the same location:

has(Item, I+1) :-

in_list(Item),

time(I),

pick(Item, I).

at(L, I+1) :-

in_list(Item),

at(L, I),

time(I),

pick(Item, I).

4



%% Action: PAY

%% Preconditions: we are at the cashier and have not yet paid:

{ pay(I) } :-

located(cashier, L),

at(L, I),

not paid(I),

time(I).

% Effect: we have paid, stay at the same location

paid(I+1) :-

time(I),

pay(I).

at(L, I+1) :-

pay(I),

at(L, I),

located(cashier, L),

time(I).

%%% FRAME AXIOMS

% we may be only in one place at a time

:- 2 { at(L, I) : location(L) },

time(I).

% our position stays the same if we are not moving

at(L, I+1) :-

at(L, I),

location(L),

time(I),

not moving(I).

% we don’t drop picked items

has(Item, I+1) :-

has(Item, I),

in_list(Item),

time(I).

% once we pay we stay paid

paid(I+1) :-

5



paid(I),

time(I).

6


