OUTLINE

Representing Normal Programs with Clauses

Tomi Janhunen
Tomi.Janhunen@hut.fi

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory for Theoretical Computer Science

August 26, 2004

MOTIVATION

- Our goal is to combine the knowledge representation capabilities of normal logic programs with the efficiency of SAT solvers.

- To realize this setting, we present a polynomial and faithful but non-modular translation.
(1) Terms and Definitions
(2) Characterizing Stability
(3) Clausal Representation
(4) Experiments
(5) Discussion
helsinki university of technolog
boratory for Theoretical Computer Science
(1) TERMS AND DEFINITIONS
- A rule r is an expression of the form

$$
\mathrm{h} \leftarrow \mathrm{~b}_{1}, \ldots, \mathrm{~b}_{n}, \sim \mathrm{c}_{1}, \ldots, \sim \mathrm{c}_{m} .
$$

- We use the following notations for a rule r :

$$
\begin{aligned}
\mathrm{H}(r)=\mathrm{h} & \text { (head) } \\
\mathrm{B}(r)=\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{n}, \sim \mathrm{c}_{1}, \ldots, \sim \mathrm{c}_{m}\right\} & \text { (body) } \\
\mathrm{B}^{+}(r)=\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{n}\right\} & \\
\mathrm{B}^{-}(r)=\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{m}\right\} &
\end{aligned}
$$

- We define normal logic programs, or normal programs for short, as sets of rules.

Syntactic Restrictions

- We distinguish the following special cases:
- positive rules: $\mathrm{h} \leftarrow \mathrm{b}_{1}, \ldots, \mathrm{~b}_{n}$
— atomic rules: $\mathrm{h} \leftarrow \sim \mathrm{c}_{1}, \ldots, \sim \mathrm{c}_{m}$
- strictly unary rules: $\mathrm{h} \leftarrow \mathrm{b}, \sim \mathrm{c}_{1}, \ldots, \sim \mathrm{c}_{m}$
— strictly binary rules: $\mathrm{h} \leftarrow \mathrm{b}_{1}, \mathrm{~b}_{2}, \sim \mathrm{c}_{1}, \ldots, \sim \mathrm{c}_{m}$
- We extend these conditions for sets of rules:
— positive programs: $\forall r \in P:\left|\mathrm{B}^{-}(r)\right|=0$
- atomic programs: $\forall r \in P:\left|\mathrm{B}^{+}(r)\right|=0$
- unary programs: $\quad \forall r \in P:\left|\mathrm{B}^{+}(r)\right| \leq 1$
- binary programs: $\forall r \in P:\left|\mathrm{B}^{+}(r)\right| \leq 2$

Least Models

If P is a positive normal program, then

1. P has a unique minimal model, i.e. the least model $\mathrm{LM}(P)$ of P;
2. $\operatorname{LM}(P)=\mathrm{T}_{P} \uparrow \omega=\operatorname{lfp}\left(\mathrm{T}_{P}\right)$ where the immediately true operator T_{P} is defined by

$$
\mathrm{T}_{P}(A)=\left\{\mathrm{H}(r) \mid r \in P \text { and } \mathrm{B}^{+}(r) \subseteq A\right\} ;
$$

and
3. $\operatorname{lfp}\left(\mathrm{T}_{P}\right)=\mathrm{T}_{P} \uparrow i$ for some $i \in \mathbb{N}$, if P is finite.

Level Numbers

Definition: For each atom $\mathrm{b} \in \operatorname{LM}(P)$, the level number lev (b) of b is the least number n such that $\mathrm{b} \in \mathrm{T}_{P} \uparrow n-\mathrm{T}_{P} \uparrow(n-1)$.

Example: Consider a positive normal program

$$
P=\left\{r_{1}=\mathrm{a} \leftarrow ; \quad r_{2}=\mathrm{a} \leftarrow \mathrm{~b} ; \quad r_{3}=\mathrm{b} \leftarrow \mathrm{a}\right\}
$$

with $\operatorname{LM}(P)=\{\mathrm{a}, \mathrm{b}\}$ and the corresponding leve numbers $\operatorname{lev}(\mathrm{a})=1$ and $\operatorname{lev}(\mathrm{b})=2$.

Stable and Supported Models

Definition: Given an interpretation M, the Gelfond-Lifschitz reduct

$$
P^{M}=\left\{r^{+} \mid r \in P \text { and } \mathrm{B}^{-}(r) \cap M=\emptyset\right\}
$$

where r^{+}is defined as $\mathrm{H}(r) \leftarrow \mathrm{B}^{+}(r)$ for $r \in P$.
Definition: For a normal program P, an interpretation $M \subseteq \operatorname{At}(P)$ is

1. a stable model of $P \Longleftrightarrow M=\operatorname{LM}\left(P^{M}\right)$, and
2. a supported model of $P \Longleftrightarrow M=\mathrm{T}_{P^{M}}(M)$.

Stable and Supported Models

Example: The normal program
$P=\{\mathrm{a} \leftarrow \mathrm{b} ; \mathrm{b} \leftarrow \mathrm{a}\}$ has two supported models
$M_{1}=\emptyset$ and $M_{2}=\{\mathrm{a}, \mathrm{b}\}$, but only M_{1} is stable, as
$\operatorname{LM}\left(P^{M_{1}}\right)=\operatorname{LM}(P)=\emptyset=M_{1}$ and
$\operatorname{LM}\left(P^{M_{2}}\right)=\operatorname{LM}(P)=\emptyset \neq M_{2}$.
Some important properties:

1. Stable models are also supported models.
2. Stable and supported models coincide for atomic programs.
3. Clark's completion captures supported models.

Definition: Let M be a supported model of a normal program P. A level numbering w.r.t. M is a function \# : $M \cup \operatorname{SR}(P, M) \rightarrow \mathbb{N}$ such that

1. for all $\mathrm{a} \in M$,
$\# \mathrm{a}=\min \{\# r \mid r \in \operatorname{SR}(P, M)$ and $\mathrm{a}=\mathrm{H}(r)\}$ and
2. for all $r \in \operatorname{SR}(P, M)$,

$$
\# r=\max \left\{\# \mathrm{~b} \mid \mathrm{b} \in \mathrm{~B}^{+}(r)\right\}+1
$$

where $\operatorname{SR}(P, M)=\{r \in P \mid M \models \mathrm{~B}(r)\}$.
We define $\max \emptyset=0$ to cover rules r with $\mathrm{B}^{+}(r)=\emptyset$.

Capturing Stable Models

Let M be a supported model of P.
Proposition: If \# is a level numbering w.r.t. M, then it is unique.

Theorem: M is a stable model of P
\Longleftrightarrow there is a level numbering \# w.r.t. M.

Capturing Stable Models

Example: Recall the supported models of $P=\left\{r_{1}, r_{2}\right\}$ with $r_{1}=\mathrm{a} \leftarrow \mathrm{b}$ and $r_{2}=\mathrm{b} \leftarrow \mathrm{a}:$ $M_{1}=\emptyset$ and $M_{2}=\{\mathrm{a}, \mathrm{b}\}$.
\square Since $M_{1} \cup \operatorname{SR}\left(P, M_{1}\right)=\emptyset, M_{1}$ is trivially stable .

- For M_{2}, the domain $M_{2} \cup \operatorname{SR}\left(P, M_{2}\right)=M_{2} \cup P$ and the set of equations

$$
\begin{aligned}
& \# \mathrm{a}=\# r_{1}, \# r_{1}=\# \mathrm{~b}+1 \\
& \# \mathrm{~b}=\# r_{2}, \# r_{2}=\# \mathrm{a}+1
\end{aligned}
$$

has no solution. Thus M_{2} is not stable.

(3) CLAUSAL REPRESENTATION

- We use an atomic normal program $\operatorname{Tr}_{\text {AT }}(P)=$
$\operatorname{Tr}_{\text {SUPP }}(P) \cup \operatorname{Tr}_{\mathrm{CTR}}(P) \cup \operatorname{Tr}_{\mathrm{MIN}}(P) \cup \operatorname{Tr}_{\mathrm{MAX}}(P)$
as an intermediary representation when translating a normal program P into a set of clauses $\operatorname{Tr}_{\mathrm{CL}}\left(\operatorname{Tr}_{\mathrm{AT}}(P)\right)$.
- Level numbers have to be captured using binary counters which are represented by vectors of propositional atoms.
- Certain primitives have to be represented: $\operatorname{SEL}(c), \operatorname{NXT}(c, d), \operatorname{FIX}(c), \operatorname{LT}(c, d), \operatorname{EQ}(c, d)$.

Optimizations

- The level numbers associated with rules can be totally omitted, if all non-binary rules r with $\left|\mathrm{B}^{+}(r)\right|>2$ are translated away.
- A normal logic program P is partitioned into its strongly connected components C_{1}, \ldots, C_{n} on the basis of positive dependencies.
■ No counters are needed, if $\left|\mathrm{H}\left(C_{i}\right)\right|=1$ holds.
- The number of bits $\nabla C_{i}=\left\lceil\log _{2}\left(\left|\mathrm{H}\left(C_{i}\right)\right|+2\right)\right\rceil$ for other strongly connected components C_{i}.
- Fixed translation schemes can be devised for atomic, strictly unary, and strictly binary rules.

Example

For $P=\{\mathrm{a} \leftarrow \mathrm{b} ; \mathrm{b} \leftarrow \mathrm{a}\}$, the translation $\operatorname{Tr}_{\mathrm{AT}}(P)$ contains the following rules for a:

$$
\begin{aligned}
& \mathrm{b} \leftarrow \sim \overline{\mathrm{bt}\left(r_{2}\right)} ; \overline{\mathrm{bt}\left(r_{2}\right)} \leftarrow \sim \mathrm{bt}\left(r_{2}\right) ; \quad \mathrm{bt}\left(r_{2}\right) \leftarrow \sim \overline{\mathrm{a}} ; \\
& \mathrm{a} \leftarrow \sim \mathrm{a} ; \quad \mathrm{x} \leftarrow \sim \mathrm{x}, \sim \overline{\mathrm{a}}, \sim \min (\mathrm{a}) ; \\
& \mathrm{x} \leftarrow \sim \mathrm{x}, \sim \overline{\mathrm{bt}\left(r_{2}\right)}, \sim \overline{\mathrm{tt}(\mathrm{nxt}(\mathrm{a}), \operatorname{ctr}(\mathrm{b}))_{1}} ; \quad \text { and } \\
& \min (\mathrm{b}) \leftarrow \sim \overline{\mathrm{bt}\left(r_{2}\right)}, \sim \overline{\operatorname{eq}(\mathrm{nxt}(\mathrm{a}), \operatorname{ctr}(\mathrm{b}))}
\end{aligned}
$$

in addition to four subprograms for choosing the values of $\operatorname{ctr}(\mathrm{a})$ and $\mathrm{nxt}(\mathrm{a})$ as well as comparing the latter with $\operatorname{ctr}(\mathrm{b})$. The rules for b are symmetric.
The only stable model is $N=\left\{\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{bt}\left(r_{1}\right)}, \overline{\mathrm{bt}\left(r_{2}\right)}\right\}$.

(4) EXPERIMENTS

- We have implemented $\operatorname{Tr}_{\mathrm{AT}}$ and $\mathrm{Tr}_{\mathrm{CL}}$ as respective translators LP2ATOMIC and LP2SAT to be used together with LPARSE.
■ Our experiments were run on a 1.67 GHz CPU with 1GB memory.
- In our benchmark, we compute all subgraphs o D_{n} whose all vertices are mutually reachable.

Here D_{n} is a directed graph with n vertices and $n^{2}-\imath$ edges: $E_{n}=\{\langle i, j\rangle \mid 0<i \leq n, 0<j \leq n, i \neq j\}$.
uq The order in which the reachability of nodes inferred cannot be determined beforehand.

Computing All Solutions

Number of Vertices	1	2	3	4	5
SMODELS	0.004	0.003	0.003	0.033	12
CMODELS	0.031	0.030	0.124	293	-
LP2ATOMIC+SMODELS	0.004	0.008	0.013	0.393	353
LP2SAT+CHAFF	0.011	0.009	0.023	1.670	-
LP2SAT+RELSAT	0.004	0.005	0.018	0.657	1879
WF+LP2SAT+RELSAT	0.009	0.013	0.018	0.562	1598
Models	1	1	18	1606	565080
SCCs with $\|H(C)\|>1$	0	0	3	4	5
Rules (LPARSE)	3	14	39	84	155
Rules (LP2ATOMIC)	3	18	240	664	1920
Clauses (LP2SAT)	4	36	818	2386	7642
Clauses (WF+LP2SAT)	2	10	553	1677	5971

Reachability Benchmark

```
```

vertex(1..n).

```
```

vertex(1..n).
in(V1,V2) :- not out(V1,V2),
in(V1,V2) :- not out(V1,V2),
vertex(V1;V2), V1!=V2.
vertex(V1;V2), V1!=V2.
out(V1,V2):- not in(V1,V2),
out(V1,V2):- not in(V1,V2),
vertex(V1;V2), V1!=V2.
vertex(V1;V2), V1!=V2.
reach(V,V) :- vertex (V).
reach(V,V) :- vertex (V).
reach(V1,V3) : - in(V1,V2), reach(V2,V3),
reach(V1,V3) : - in(V1,V2), reach(V2,V3),
vertex(V1;V2;V3), V1!=V2, V1!=V3.
vertex(V1;V2;V3), V1!=V2, V1!=V3.
:- not reach(V1,V2), vertex(V1;V2).

```
```

:- not reach(V1,V2), vertex(V1;V2).

```
```


Computing Only One Solution

Number of Vertices	8	9	10
SMODELS	0.009	0.013	0.022
CMODELS	0.046	0.042	0.055
LP2ATOMIC+SMODELS	$>10^{4}$	$>10^{4}$	$>10^{4}$
LP2SAT+CHAFF	0.771	32.6	254
LP2SAT+RELSAT	2.51	$>10^{4}$	$>10^{4}$
WF+LP2SAT+RELSAT	2.80	4830	$>10^{4}$
ASSAT	0.023	0.028	0.037

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science

- The new characterization of stable models is based on canonical level numberings.
- The translation function $\operatorname{Tr}_{\mathrm{AT}} \circ \operatorname{Tr}_{\mathrm{CL}}$ has distinctive properties:
- it covers all finite normal programs P,
- a bijective relationship of models is obtained
- the Herbrand base $\operatorname{At}(P)$ is preserved,
$■$ the length $\left\|\operatorname{Tr}_{\mathrm{CL}}\left(\operatorname{Tr}_{\mathrm{AT}}(P)\right)\right\|$ is of order $\|P\| \times \log _{2}|\operatorname{At}(P)|$, and
- incremental updating is not needed.

Conclusions and Future Work

- Various kinds of closures of relations, such as transitive closure, can be properly captured with classical models.
- Our approach is competitive against other

SAT-solver-based approaches when the task is to compute all stable models.
■ Further optimizations should be pursued for in order to really compete with SMODELS.

- In the future, we intend to study techniques to reduce the number of binary counters and the numbers of bits involved in them.

