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/ BACKGROUND AND MOTIVATION ' \

Example: Suppose that P contains a rule a < by,...,b, and the
head a is known to be false in a model M of P being constructed.

= One of by, ..., b, must be false in M (if M | P is to hold).
1. If n =1, then we know immediately that b, is false in M.

2. If, in addition, by,...,b;_1 and b;, ..., b, are known to be true in
M, then b; is false in M.

Q: Can we somehow reduce the number of positive subgoals in rules?

T. Janhunen [CL 2000]: Comparing the Expressive Powers of Some
Syntactically Restricted Classes of Logic Programs.

T. Janhunen [ASP, 2003]: A Counter-Based Approach to Translating
kLogic Programs into Sets of Clauses. /
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/ 1. PRELIMINARIES: NORMAL PRGGRAIVES'

O A normal (logic) program P is a set of rules of the form
a«—by,...,by,~C1, ..., ~Cpy.
O We use the following notations for a rule r of the kind above:

head(r) = a,
body™ (r) = {by,...,b,}, body™ (r) = {c1,...,cn}, and
body(r) = {b1,...,bp,~c1,...,~cn}.
O A rule r € P is satisfied in a propositional interpretation
I CHb(P) < I = body(r) implies I |= head(r).

O An interpretation M C Hb(P) is a (classical) model of P
& (denoted by M = P) <= M [=r holds for all r € P.

~

/
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/ Minimal Models. \ / Supported Mcédsl \

Definition: A model M |= P is a minimal model of P O Given an interpretation M C Hb(P), we define the set of
<= there is no model M' |= P such that M' C M.

supporting rules

it i s a unique
O E\{ery plosmgel(negatlon-free) normal program P ha q SR(P, M) = {r € P | M = body(r)}.
minimal model T M[(P), i.e. the least model of P.
O The least model LM(P) = lfp(Tp) where Tp is an operator Definition: An interpretation M C Hb(P) is a supported model of
defined by Tp(A) = {head(r) | 7 € P and body™(r) C A}. P < M P andVae M: 3r € SR(P, M) such that

O Given a € LM(P) = lfp(Tp), the level number #a is the least head(r) = a.

number ¢ > O such thatae Tp i butag Tp 19— 1. Example: A positive program P = {a < b; b < a} haS two

Example: For P ={a«; b« a; c<—b; a«< b; d« d}, supported models y7, — () and M, = {a, b}, but only M, is stable.
the least model LM(P) = {a, b, c}. Proposition: Stable models of P are also supported models of P
(but the converse does not hold in general).

/ \_ /

The respective level numbers are #a = 1, #b = 2, and #c = 3.
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/ Stable Mode'S' \ / 2. GENERAL ASSUMPTIONS ON LOGIC PRGGRAMS' \

Befinition: A logic program is a triple (P, A, V') where

O Given an interpretation M C Hb(P), the Gelfond-Lifschitz reduct

_ 1. P is a set of expressions (such as rules, clauses or sentences) built
PM = (head(r) « body™ (r) | r € P and body ™ (r) " M = (}. of propositional atoms;

Definition: An interpretation M C Hb(P) of a normal logic program 2. Ais a set of additional atoms that need not appear in P; and

P is a stable model of P < M = LM(PM), 3. V defines which atoms appearing in P and A are visible.
Example: A program P = {a < ~b} has three classical models By a slight abuse of notation, we write P for (P, A, V), Hb,(P) for A,
M, = {a}, M, = {b}, and M = {a, b}, but only M is stable: Hb(P) for the set of atoms appearing in P and A, and Hb,(P) for V.

The hidden part Hby, (P) is Hb(P) — Hby (P).

Unless othwerwise stated Hb,(P) = () and Hb,(P) = Hb(P).
Proposition: Stable models of P are also classical models of P Example: A logic program P = {a « ~a} with Hb(P) = {a, b} and
(but the converse does not hold in general). Hby(P) = {a} has two classical models 17, — {2} and Ms — {a, b}.

/ -

PMi = {3} and PM2 = pMs — ),
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/ Requirements for Classes of Logic Programs. \

Each class of logic programs ¢ myst satisfy the following criteria:

1. Each member P € C is a finite set of expressions and the
Herbrand base Hb(P) is finite.

2. Closure under unions: if P e C and Q € C, then PUQ € C.
3. Closure under intersections: if P € C and Q € C, then PN Q € C.

4. There is a semantical operator Sem¢ that maps a program P € C
to a set of sets Seme (P) C 2HP(P) i, the set of models of P.

Example: The class of finite normal programs P satisfies these criteria
but Poga = {P € P | P has an odd number of ruIeS} does not.

\_ /

Example: Some Syntactic Subclasses of P I

O By constraining the number of positive body literals n, we obtain

the following subclasses of normal programs:

1. The class of atomic programs A (n = 0 for every rule).
2. The class of unary programs U/ (n <1 for every rule).
3. The class of binary programs B (n < 2 for every rule).

[] Acucscp.

O For each class C € {A,U, B, P}, the semantics is determined by
Seme(P) = SM(P) = {M C Hb(P) | M = LM(PM)}.

00 The classes of positive programs A+ — y/+ « B+ ¢ P+ are
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Example: Sets of Clausesl

O In analogy to rules, propositional clauses

airVvV---Va,V-byV---V-b,
are expressions formed of propositional atoms.
O We write SC for the class of finite sets of clauses.

O The semantics of a set S € SC is determined by an operator
Semgsc(S) = CM(S) = {M C Hb(S) | M = S}.

|:| SC can be viewed as a class of logic programs.
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obtained analogously by denying negative body literals.
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/3. NOTION OF EQUIVALENCE'

Befinition: Logic programs P € C and Q € C' are visibly equivalent
(denoted by P =, Q) —

1. Hb,(P) = Hb,(Q) and

2. there is a bijective function f : Sem¢(P) — Seme/ (Q) such that
M N Hby (P) = f(M) N Hby(Q).

holds for every M € Semc(P).

O This notion is applicable both within a single class of programs as
well as between different classes of programs.

0 The number of models is preserved under =, .

. /
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Example:
1. The stable models of a normal logic program
P={a«—~b; b—r~a; c—a; c—~a}
with Hb(P) = {a, b, c} are M; = {a,c} and My = {b,c}.
2. The set of clauses
S={avd, mav-d, aVc, maVc}
has exactly two classical models Ni = {a,c} and Ny = {d, c}.
since Hb(S) = {a, c,d}.
The atoms b and d, which appear in P and S, respectively, can be
hidden by tuning the visibility of atoms: Hb,(P) = Hb,(S) = {a, c}.
|:| P =, S holds.

\_ /
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Alternative notions of equivalence.

Let us compare =, with the following relations:

Definition: Programs P € P and Q € P are (weakly) equivalent
<= SM(P) = SM(Q).

Definition: Programs P € P and Q € P are strongly equivalent
< SM(PUR)=SM(QUR) forall R € P.

Definition: Programs P € C and Q € C’ are weakly visibly
equivalent (denoted by p = () ) —

1. Hb,(P) = Hb,(Q) and

2. {MNHb,(P)| M € Sem¢(P)} =
{NNHb,(Q) | N € Seme:(Q)}.

4. PROPERTIES OF TRANSLATICN FUNCTIONS'

Befinition: A translation function Tr : C — C’ is polynomial (P)
<= for all P € C, the time required to compute Tr(P) is polynomial
in ||P||, i.e. the number of symbols needed to represent P.

Definition: A translation function Tr : C — C' is faithful (F)
< forallPC, P=, Tr(P).

Example: Consider a hypothetical translation function
TrDOUBLE(P) =PU {a — Nb; b« Na},

where a ¢ Hb(P) and b ¢ Hb(P) are two new atoms, and
Hb, (TrpousLe(P)) = Hby(P) by definition.

|:| TrpousLk is linear (and thus polynomial) but not faithful.

\_ /
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Properties of Translation Functions (continued) I

Module conditions for two programs P € C and @ € C are:

M. PNQ=0 M2. Hb,(P) N Hb,(Q) =0
M3. Hby(P)NHb(Q) = 0 M4. Hb(P) N Hby(Q) =0
Definition: A translation function Tr : C — C' is modular (M)

<= for all P € C and Q € C satisfying M1-M4,
Tr(PUQ) =Tr(P)UTr(Q); and Tr(P) and Tr(Q) satisfy M1-M4.

Definition: A translation function Tr : C — C' is PFM
<= Tr is polynomial, faithful, and modular.

Propasition: Any composition of polynomial /faithful/modular

translation functions is also polynomial/faithful/modular.

. /
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/ Classification Method ' \

Given two classes C and C’ of programs, the goal is to establish either
O C <ppm C’ (there is 2 PFM translation function Tr : C — C’), or
O C £prm C' (such a translation function does not exist).

These relations induce further relations for classes of logic programs:

Notation Definition Relation

C <prM c! C <prM C" and C’ gPFM C strictly less
C =PFM C/ C SPFM C/ and C/ SPFM C equal

C #PFM ! C ﬁpFM C'and C’ ﬁpFM C incomparab/e

Stabiilit mallit vs. toteutuvuusongelma

|:| (asses can be ordered on the basis of their expressive power.

/

—14 -

/ 5. EXPRESSIVE POWER ANALYSIS' \

Proposition: The inclusions At Cc Ut c BT C P imply
AT <ppm UT <ppm BT <ppm PT.

Theorem: U™ ZLpy AT

Proof. Suppose that Tr : /T — AT is faithful and modular.
Programs P = {a < b} and @ = {b <} satisfy M1-M4.

Thus Tr(P U Q) = Tr(P) U Tr(Q) which are disjoint and atomic.

Now a € LM(P U Q) a e LM(Tr(P) U Tr(Q))
a < belongs to Tr(P) or to Tr(Q)
a € LM(Tr(P)) or a € LM(Tr(Q))

a € LM(P) or a € LM(Q),

A
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Expressiveness of Positive Programs (Continued)'

However, a faithful and nen-modular translation function
from U to AT is still possible:

Trpm(P) = {a < | a € LM(P)}.

For the programs P and @ in the preceding counter-example:
TI'LM(P) = @, TI‘LM(Q) = {b H} and
TFLM(P U Q) = {a «—; b <—} 75 TI‘LM(P) U TI'LM(Q)

Moreover, it can be established that BT £py U™ and
Pt <ppm BT,

The resulting expressive power hierarchy for positive programs:

AT <ppm UT <ppum BT =prm P

/
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Summary of our Results for Normal Programs.

AcUCBCP = A<prmU <ppMm B <ppMm P.
Non-binary rules can be translated away: P <ppnm B.

Binary and unary rules cannot be translated away in a faithful
and modular way: B £pv U and U Ly A.

It is straightforward to encode propositional satisfiability problems
as (atomic) normal programs: SC <ppm A.

Due to non-monotonicity A £y SC.

The resulting hierarchy of the five classes under consideration:

SC <prm A <prm U <prpm B =prum P.

/
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4 N 4 N
7. NON-MODULAR TRANSLATION FUNCTIONS'

6. YET ANCTHER CHARACTERIZATION GOF STABILITY' . . " .
0 Despite the preceding intranslatability results we will seek for

polynomial, faithful and non-modular (PF) translation functions.

Definition: Given a supported model M of P, a function # from

M USR(P, M) to Z™" is a level numbering w.r.t. M < O The first goal is to translate any normal program P into an

- T‘I’ P

2. Vr e SR(P,M): . . S
( ) translation that consists of two fairly independent parts:

max{#b | b € body™ ()} + 1, if body™ (1) # 0. 1. The first part captures a supported model M of P.

1, otherwise. 2. The second part checks if one can assign a level numbering
(as described above) for atoms a € M and rules r € SR(P, M).

#r =

|:| In addition atoms, level numbers are assigned to rules. _ _ _ ) _
0 The result is to be a polynomial and faithful translation function

such that ||Tr(P)|| is of order || P|| x log, |Hb(P)|.

\_ / \_ /
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Characterization of Stability (Continued) I
Capturing Supported Models: Trsypp(P)

Theorem: If M is a stable model of P, then M is a supported model
of P and there exists a unique level numbering # w.r.t. M : 0 The complementary atom 7 is defined for each a € Hb(P):

1. Fora € M, #a is defined as for the members of Ifp(Tpu ). 3« ~a.

2. Forr € SR(P, M), #r = max[{1} U {#b + 1| b € body™(r)}]. O A rule r € P is translated as follows:
If M is a supported model of P and there is a level numbering # bt(r) < ~body™ (r), ~body™ (r),
w.r.t. M, then # is unique and M is a stable model of P. bt(r) « ~bt(r), and
Example: Recall P = {ri,72}, where r; =a<«—band ry =b « 3, head(r) « ~bt(r)
and the second supported model M = {a, b} of P. where bt(r) is a new atom denoting that “the body of r is true”.
The rfaquirements for a level numbering w.r.t. M lead to four O New atoms are necessary here in order to avoid quadratic blow-up
equations: #a = 1, 71 = #b + 1, #b = #ry, and #ry = ffa+ 1. in the rest of the translation.

|:| There is no solution = M is not stable.
= / N /
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4 N

Binary Counters: Trcrgr(P)

O The number of bits VP = [log,(|Hb(P)| + 2)].

O We introduce a binary counter (two vectors of atoms)

ctr(a) = ctr(a)y ...ctr(a)yp and ctr(a) = ctr(a)y ...ctr(a)vp
for each a € Hb(P).

O The value of ctr(a) is chosen if a € M, i.e. 3 cannot be derived:
a subprogram SELyp(ctr(a),a) does the job.

O Similarly, we need to define another counter nxt(a) that takes the
value of ctr(a) incremented by one: NXTyp(ctr(a), nxt(a), 3).

O For r € P with body™ (r) # 0, we need SELyp(ctr(r), bt(r)).
O For r € P with body™ (1) = 0, FIXgp(ctr(r), 1, bt(r)) is enough.

\_ /

— 22 —

4 N

Checking Maximality: Tryax(P)

O The value of ctr(r) is supposed to be #r in binary.

O If body™ (r) # (), we need for each b € body™ (1) subprograms

LTyp(ctr(r), nxt(b), bt(r)) and EQgp(ctr(r), nxt(b), bt(r))

plus the following rules:

X = ~ox, ~bt(r), ~It(ctr(r), nxt(b))1;

max(r) « ~bt(r), ~eq(ctr(r), nxt(b)); and

X «— ~x, ~bt(r), ~max(r).

0 The case that body ™ (r) = ) is handled by Trorr(P).
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Checking Minimality: Tryn(P)

O The value of ctr(a) is supposed to be #a in binary.

O For each rule r and a = head(r), we need the subprograms

LTyp(ctr(r),ctr(a), bt(r)) and EQgp(ctr(r), ctr(a), bt(r))

in addition to the following rules:

y — r~y, ~bt(r), ~It(ctr(r), ctr(a)); and

min(a) <« ~bt(r), ~eq(ctr(r), ctr(a)).
O For each a € Hb(P), we introduce the rule y «— ~y, ~a, ~min(a).

|:| The translation function Trar defined by
Trar (P) = Trsupp (P) U TrCTR(P) U TrCTR(P) U TI‘MIN(P)
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is both sub-quadratic (thus also polynomial) and faithful.
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Non-Medular Translation Functions (Continued) I

0 The next objective is to embed A into SC.

Definition: For an atomic normal program P € A and an atom
a € Hb(P), let Defp(a) = {r € P | head(r) = a},
Trep(a, P) = {aV —bt(r) | a € Hb(P) and r € Defp(a)} U
{—a Vv \/{bt(r) | r € Defp(a)} |a € Hb(P)} U
{bt(r) vV \Vbody ™ (r) | r € Defp(a)} U

{=bt(r) V —=c | r € Defp(a) and c € body™ (r)},

and Trcr,(P) = U,emp(p) TroL(a, P).

D ./4 SPF SC, P SPF SC, and SC =PF A =PF U =PF B =PF P.

\

- 25 —

Stabiilit mallit vs. toteutuvuusongelma

Stabiilit mallit vs. toteutuvuusongelma



T-79.154 / Syksy 2003 Stabiilit mallit vs. toteutuvuusongelma T-79.154 / Syksy 2003 Stabiilit mallit vs. toteutuvuusongelma

/ 8. RELATED WORK ' \ / Related Work (Centinued) I \

O 1. Niemel2 [AMAI, 1999]: Logic Programs with Stable Model O R. Ben-Eliyahu and R. Dechter [AMAI, 1994]: Propositional
Semantics as a Constraint Programming Paradigm. semantics for disjunctive logic programs.
— A counter-example which shows that normal programs cannot — Binary numbers are not used = at least quadratic encoding.
be translated into sets of clauses in a faithful and modular way. — The stable models of P and the classical models of Trep (P)
— Capturing propositional satisfiability with normal programs. are not in a bijective relationship.

Example: Let P ={a < b,c; b« d; c—d; d— ~e; d+« a}.
The atoms b and c in the unique stable model M = {a,b,c,d}
can be ordered in two different ways (in a total ordering).

O S. Brass and J. Dix [JLP, 1999]: Semantics of (Disjunctive) Logic
Programs Based on Partial Evaluation.

Example: In partial evaluation, a rule a <+ b, ~c is replaced by
O Y. Babovich, E. Erdem, and V. Lifschitz [NMR Workshop, 2000]:

a <« ~bj,~c and a < ~b,~c ) )
Fages' Theorem and Answer Set Programming.

if the definition of b consists of b «— ~b; and b « ~b,. .. :
— Programs containing loops are not (necessarily) covered.

|:| An exponential space is needed in the worst case.

K J \ — Tightness is based on a different numbering of atoms. J

- 26 — -28-
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/ Related Work (Continued) I \ /D U. Egly, et al. [AAAI, 2001]: Computing Stable Models with \

Quantified Boolean Formulas: Some Experimental Results.

— In this approach, disjunctive stable models are captured with

0 G. Antoniou et al. [ACM TOCL, 2001]: quantified Boolean formulas Jp; ...3p,Vq; ... Vq,, ¢.

Representation Results for Defeasible Logic. — In particular, the minimality requirement of disjunctive stable

They study transformations on  class of defeasible theories: models is easy to express using such a formula.

1. Correctness: p =10y Tr(D).
2. Incrementality: Dy U D,y =L(D1)UL(D>) TI'(Dl) U TI‘(DQ)
3. Modularity: Dy U Dy =L(D1)UL(D>) DU 'TI‘(DQ)

— From the point of view of complexity, the computation of
stable models is easier in the case of normal logic programs.

[0 F. Lin and Y. Zha© [AAAI, 2002]: ASSAT: Computing Answer

Sets of a Logic Program by SAT Solvers.
— The semantics of defeasible theories is quite different. ~ The idea is to extend the completion of p [Clark, 1978] with

. . . . loop formulas to exclude non-stable models.
— The notion of correctness is close to our notion of faithfulness.

. . . — In the worst case, there is an exponential number of loops
— The other two conditions are semantic rather than syntactic.

\ / \
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(for instance, Hamiltonian paths for complete graphs).
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9. CONCLUSIONS I

It is not easy to remove all positive body literals.

EPH (PFM): SC <prm A <prm U <prMm B =prMm P.
EPH (PF): SC =pr A =pr U =pr B =pr P.

I O o N

Distinctive features of the counter-based approach:
1. bijective relationship of models and
2. ||Tx(P)|| is of order ||P|| x logy [Hb(P)|.

0 Transitive closure can be properly captured with classical models.

0 Experimental results with the implementations of TraT and Trcr,
are promising, but further optimizations should be pursued for in
order to really compete with SMODELS.

\_ /
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