Translatability and Intranslatability Re^{sults} for Certain Classes of Logic Programs

Tomi Janhunen Helsinki University of Technology Department of Computer Science and Engineering Laboratory for Theoretical Computer Science

December 4, 2003

BACKGROUND AND MOTIVATION

Example: Suppose that P contains a rule $a \leftarrow b_1, \dots, b_n$ and the head a is known to be false in a model M of P being constructed.

- \implies One of b_1, \ldots, b_n must be false in M (if $M \models P$ is to hold).
- 1. If n = 1, then we know immediately that b_1 is false in M.
- 2. If, in addition, b_1, \ldots, b_{i-1} and b_i, \ldots, b_n are known to be true in M, then b_i is false in M.
- Q: Can we somehow reduce the number of positive subgoals in rules?
- T. Janhunen [CL 2000]: Comparing the Expressive Powers of Some Syntactically Restricted Classes of Logic Programs.
- T. Janhunen [ASP, 2003]: A Counter-Based Approach to Translating Logic Programs into Sets of Clauses.

OUTLINE OF THE TALK

- 1. Preliminaries: Normal Programs
- 2. General Assumptions on Logic Programs
- 3. Notion of Equivalence
- 4. Properties of Translation Functions
- 5. Expressive Power Analysis
- 6. Yet Another Garacterization of Stability
- 7. Non-Modular Alternatives
- 8. Related Work
- 9 Conclusions

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

1. PRELIMINARIES: NORMAL PROGRAMS

 \triangleright A **normal (logic) program** P is a set of **rules** of the form

$$\mathsf{a} \leftarrow \mathsf{b}_1, \dots, \mathsf{b}_n, \sim \mathsf{c}_1, \dots, \sim \mathsf{c}_m.$$

ightharpoonup We use the following notations for a rule r of the kind above:

$$\begin{aligned} & \operatorname{head}(r) = \mathsf{a}, \\ & \operatorname{body}^+(r) = \{\mathsf{b}_1, \dots, \mathsf{b}_n\}, \ \operatorname{body}^-(r) = \{\mathsf{c}_1, \dots, \mathsf{c}_m\}, \ \mathsf{and} \\ & \operatorname{body}(r) = \{\mathsf{b}_1, \dots, \mathsf{b}_n, \sim & \mathsf{c}_1, \dots, \sim & \mathsf{c}_m\}. \end{aligned}$$

- ightharpoonup A rule $r \in P$ is satisfied in a propositional **interpretation** $I \subseteq \operatorname{Hb}(P) \iff I \models \operatorname{body}(r) \text{ implies } I \models \operatorname{head}(r).$
- ightharpoonup An interpretation $M\subseteq \mathrm{Hb}(P)$ is a **(classical) model** of P (denoted by $M\models P$) $\iff M\models r$ holds for all $r\in P$.

Minimal Models

Definition: A model $M \models P$ is a minimal model of P

 \iff there is no model $M' \models P$ such that $M' \subset M$.

- > Every positive (negation free) normal program P has a unique minimal model LM(P), i.e. the **least model** of P.
- ightharpoonup The least model $LM(P) = lfp(T_P)$ where T_P is an operator defined by $T_P(A) = \{ \text{head}(r) \mid r \in P \text{ and } \text{body}^+(r) \subseteq A \}$.
- ightharpoonup Given $a \in LM(P) = lfp(T_P)$, the **level number** #a is the least number i > 0 such that $a \in T_P \uparrow i$ but $a \notin T_P \uparrow i - 1$.

Example: For $P = \{a \leftarrow : b \leftarrow a: c \leftarrow b: a \leftarrow b: d \leftarrow d\}$, the least model $LM(P) = \{a, b, c\}.$

The respective level numbers are #a = 1, #b = 2, and #c = 3.

-2-

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

Stabiilit mallit vs. toteutuvuusongelma

Stable Models

 \succ Given an interpretation $M \subseteq Hb(P)$, the Gelfond-Lifschitz reduct

$$P^M = \{ \operatorname{head}(r) \leftarrow \operatorname{body}^+(r) \mid r \in P \text{ and } \operatorname{body}^-(r) \cap M = \emptyset \}.$$

Definition: An interpretation $M \subseteq Hb(P)$ of a normal logic program P is a stable model of $P \iff M = LM(P^M)$.

Example: A program $P = \{a \leftarrow \sim b\}$ has three classical models $M_1 = \{a\}, M_2 = \{b\}, \text{ and } M_3 = \{a, b\}, \text{ but only } M_1 \text{ is stable:}$

$$P^{M_1} = \{ \mathsf{a} \leftarrow \} \text{ and } P^{M_2} = P^{M_3} = \emptyset.$$

Proposition: Stable models of P are also classical models of P (but the converse does not hold in general).

Supported Models

ightharpoonup Given an interpretation $M \subseteq \mathrm{Hb}(P)$, we define the set of supporting rules

$$SR(P, M) = \{r \in P \mid M \models body(r)\}.$$

Definition: An interpretation $M \subseteq Hb(P)$ is a supported model of $P \iff M \models P \text{ and } \forall a \in M : \exists r \in SR(P, M) \text{ such that }$ head(r) = a.

Example: A positive program $P = \{a \leftarrow b; b \leftarrow a\}$ has two supported models $M_1 = \emptyset$ and $M_2 = \{a, b\}$, but only M_1 is stable.

Proposition: Stable models of P are also supported models of P (but the converse does not hold in general).

- 4 -

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

2. GENERAL ASSUMPTIONS ON LOGIC PROGRAMS

Definition: A logic program is a triple $\langle P, A, V \rangle$ where

- 1. P is a set of expressions (such as rules, clauses or sentences) built of propositional atoms;
- 2. A is a set of additional atoms that need not appear in P; and
- 3. V defines which atoms appearing in P and A are visible.

By a slight abuse of notation, we write P for $\langle P, A, V \rangle$, $\mathrm{Hb_a}(P)$ for A, $\mathrm{Hb}(P)$ for the set of atoms appearing in P and A, and $\mathrm{Hb}_{\mathrm{v}}(P)$ for V. The **hidden** part $Hb_h(P)$ is $Hb(P) - Hb_v(P)$.

Unless othwerwise stated $Hb_a(P) = \emptyset$ and $Hb_v(P) = Hb(P)$.

Example: A logic program $P = \{a \leftarrow \sim a\}$ with $Hb(P) = \{a, b\}$ and $\mathrm{Hb}_{v}(P) = \{a\}$ has two classical models $M_1 = \{a\}$ and $M_2 = \{a, b\}$.

Requirements for Classes of Logic Programs

Each class of logic programs C must satisfy the following criteria:

- 1. Each member $P \in \mathcal{C}$ is a finite set of expressions and the Herbrand base $\mathrm{Hb}(P)$ is finite.
- 2. Closure under unions: if $P \in \mathcal{C}$ and $Q \in \mathcal{C}$, then $P \cup Q \in \mathcal{C}$.
- 3. Closure under intersections: if $P \in \mathcal{C}$ and $Q \in \mathcal{C}$, then $P \cap Q \in \mathcal{C}$.
- 4. There is a semantical operator $\operatorname{Sem}_{\mathcal{C}}$ that maps a program $P \in \mathcal{C}$ to a set of sets $\operatorname{Sem}_{\mathcal{C}}(P) \subseteq \mathbf{2}^{\operatorname{Hb}(P)}$, i.e., the set of models of P.

Example: The class of finite normal programs $\mathcal P$ satisfies these criteria but $\mathcal P_{\mathrm{odd}} = \{P \in \mathcal P \mid P \text{ has an odd number of rules}\}$ does not.

-6-

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

Example: Some Syntactic Subclasses of \mathcal{P}

- \triangleright By constraining the number of positive body literals n, we obtain the following subclasses of normal programs:
 - 1. The class of atomic programs \mathcal{A} (n=0 for every rule).
 - 2. The class of **unary programs** \mathcal{U} ($n \leq 1$ for every rule).
 - 3. The class of **binary programs** \mathcal{B} ($n \leq 2$ for every rule).

 $A \subset U \subset B \subset P$.

ightharpoonup For each class $\mathcal{C} \in \{\mathcal{A}, \mathcal{U}, \mathcal{B}, \mathcal{P}\}$, the semantics is determined by

$$\operatorname{Sem}_{\mathcal{C}}(P) = \operatorname{SM}(P) = \{ M \subseteq \operatorname{Hb}(P) \mid M = \operatorname{LM}(P^M) \}.$$

ightharpoonup The classes of positive programs $\mathcal{A}^+ \subset \mathcal{U}^+ \subset \mathcal{B}^+ \subset \mathcal{P}^+$ are obtained analogously by denying negative body literals.

Example: Sets of Clauses

> In analogy to rules, propositional clauses

$$\mathsf{a}_1 \lor \cdots \lor \mathsf{a}_n \lor \neg \mathsf{b}_1 \lor \cdots \lor \neg \mathsf{b}_m$$

are expressions formed of propositional atoms.

- \triangleright We write \mathcal{SC} for the class of finite sets of clauses.
- ightharpoonup The semantics of a set $S \in \mathcal{SC}$ is determined by an operator

$$\operatorname{Sem}_{\mathcal{SC}}(S) = \operatorname{CM}(S) = \{ M \subseteq \operatorname{Hb}(S) \mid M \models S \}.$$

 \mathcal{SC} can be viewed as a class of logic programs.

-8-

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

3. NOTION OF EQUIVALENCE

Definition: Logic programs $P \in \mathcal{C}$ and $Q \in \mathcal{C}'$ are visibly equivalent (denoted by $P \equiv_{v} Q$) \iff

- 1. $\operatorname{Hb}_{\operatorname{v}}(P) = \operatorname{Hb}_{\operatorname{v}}(Q)$ and
- 2. there is a bijective function $f: Sem_{\mathcal{C}}(P) \to Sem_{\mathcal{C}'}(Q)$ such that

$$M \cap \mathrm{Hb}_{\mathrm{v}}(P) = f(M) \cap \mathrm{Hb}_{\mathrm{v}}(Q).$$

holds for every $M \in Sem_{\mathcal{C}}(P)$.

- This notion is applicable both within a single class of programs as well as between different classes of programs.
- \succ The number of models is preserved under $\equiv_{\rm v}$.

Example:

1. The stable models of a normal logic program

$$P=\{\mathsf{a}\leftarrow\sim\mathsf{b};\ \mathsf{b}\leftarrow\sim\mathsf{a};\ \mathsf{c}\leftarrow\mathsf{a};\ \mathsf{c}\leftarrow\sim\mathsf{a}\}$$
 with $\mathsf{Hb}(P)=\{\mathsf{a},\mathsf{b},\mathsf{c}\}$ are $M_1=\{\mathsf{a},\mathsf{c}\}$ and $M_2=\{\mathsf{b},\mathsf{c}\}.$

2. The set of clauses

$$S=\{{\sf a}\vee{\sf d},\ \neg{\sf a}\vee\neg{\sf d},\ {\sf a}\vee{\sf c},\ \neg{\sf a}\vee{\sf c}\}$$
 has exactly two classical models $N_1=\{{\sf a},{\sf c}\}$ and $N_2=\{{\sf d},{\sf c}\}$, since ${\rm Hb}(S)=\{{\sf a},{\sf c},{\sf d}\}.$

The atoms b and d, which appear in P and S, respectively, can be hidden by tuning the visibility of atoms: $Hb_v(P) = Hb_v(S) = \{a, c\}.$

 $P \equiv_{\mathbf{v}} S$ holds.

- 10 -

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

Stabiilit mallit vs. toteutuvuusongelma

Alternative notions of equivalence

Let us compare \equiv_{v} with the following relations:

Definition: Programs $P \in \mathcal{P}$ and $Q \in \mathcal{P}$ are (weakly) equivalent $\iff SM(P) = SM(Q).$

Definition: Programs $P \in \mathcal{P}$ and $Q \in \mathcal{P}$ are strongly equivalent \iff SM $(P \cup R) =$ SM $(Q \cup R)$ for all $R \in \mathcal{P}$.

Definition: Programs $P \in \mathcal{C}$ and $Q \in \mathcal{C}'$ are weakly visibly **equivalent** (denoted by $P \equiv_{\mathbf{w}} Q$) \iff

- 1. $\operatorname{Hb}_{\mathbf{v}}(P) = \operatorname{Hb}_{\mathbf{v}}(Q)$ and
- 2. $\{M \cap \mathrm{Hb}_{\nu}(P) \mid M \in \mathrm{Sem}_{\mathcal{C}}(P)\} =$ $\{N \cap \mathrm{Hb}_{\mathbf{v}}(Q) \mid N \in \mathrm{Sem}_{\mathcal{C}'}(Q)\}.$

4. PROPERTIES OF TRANSLATION FUNCTIONS

Definition: A translation function $Tr : \mathcal{C} \to \mathcal{C}'$ is **polynomial (P)** \iff for all $P \in \mathcal{C}$, the time required to compute $\operatorname{Tr}(P)$ is polynomial in ||P||, i.e. the number of symbols needed to represent P.

Definition: A translation function $Tr : C \to C'$ is **faithful (F)** \iff for all $P \in \mathcal{C}$, $P \equiv_{\mathbf{v}} \operatorname{Tr}(P)$.

Example: Consider a hypothetical translation function

$$\operatorname{Tr}_{\text{DOUBLE}}(P) = P \cup \{ \mathsf{a} \leftarrow \sim \mathsf{b}; \ \mathsf{b} \leftarrow \sim \mathsf{a} \},$$

where a $\notin Hb(P)$ and b $\notin Hb(P)$ are two new atoms, and $Hb_{v}(Tr_{DOUBLE}(P)) = Hb_{v}(P)$ by definition.

Tr_{DOUBLE} is linear (and thus polynomial) but not faithful.

- 12 -

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

Properties of Translation Functions (continued)

Module conditions for two programs $P \in \mathcal{C}$ and $Q \in \mathcal{C}$ are:

M1. $P \cap Q = \emptyset$

M2. $\operatorname{Hb}_{\mathbf{a}}(P) \cap \operatorname{Hb}_{\mathbf{a}}(Q) = \emptyset$

M3. $\operatorname{Hb_h}(P) \cap \operatorname{Hb}(Q) = \emptyset$ M4. $\operatorname{Hb}(P) \cap \operatorname{Hb_h}(Q) = \emptyset$

Definition: A translation function $Tr : C \to C'$ is **modular (M)**

 \iff for all $P \in \mathcal{C}$ and $Q \in \mathcal{C}$ satisfying M1–M4.

 $\operatorname{Tr}(P \cup Q) = \operatorname{Tr}(P) \cup \operatorname{Tr}(Q)$; and $\operatorname{Tr}(P)$ and $\operatorname{Tr}(Q)$ satisfy M1–M4.

Definition: A translation function $Tr : C \to C'$ is **PFM**

⇔ Tr is polynomial, faithful, and modular.

Proposition: Any composition of polynomial/faithful/modular translation functions is also polynomial/faithful/modular.

Classification Method

Given two classes $\mathcal C$ and $\mathcal C'$ of programs, the goal is to establish either

- $ightharpoonup \mathcal{C} \leq_{\mathrm{PFM}} \mathcal{C}'$ (there is a PFM translation function $\mathrm{Tr}: \mathcal{C} \to \mathcal{C}'$), or
- $ightharpoonup \mathcal{C} \not\leq_{\mathrm{PFM}} \mathcal{C}'$ (such a translation function does not exist).

These relations induce further relations for classes of logic programs:

Notation	Definition	Relation
$\mathcal{C} <_{\mathrm{PFM}} \mathcal{C}'$	$\mathcal{C} \leq_{\operatorname{PFM}} \mathcal{C}'$ and $\mathcal{C}' \npreceq_{\operatorname{PFM}} \mathcal{C}$	strictly less
$\mathcal{C} =_{\mathrm{PFM}} \mathcal{C}'$	$\mathcal{C} \leq_{\mathrm{PFM}} \mathcal{C}'$ and $\mathcal{C}' \leq_{\mathrm{PFM}} \mathcal{C}$	equal
$\mathcal{C} eq_{\mathrm{PFM}} \mathcal{C}'$	$\mathcal{C} ot \leq_{\operatorname{PFM}} \mathcal{C}'$ and $\mathcal{C}' ot \leq_{\operatorname{PFM}} \mathcal{C}$	incomparable

 $\ensuremath{\text{\textbf{Q}}}_{\text{\textbf{a}}}\text{sses}$ can be ordered on the basis of their expressive power.

- 14 -

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

5. EXPRESSIVE POWER ANALYSIS

Proposition: The inclusions $A^+ \subset U^+ \subset B^+ \subset P^+$ imply

 $\mathcal{A}^+ \leq_{\mathrm{PFM}} \mathcal{U}^+ \leq_{\mathrm{PFM}} \mathcal{B}^+ \leq_{\mathrm{PFM}} \mathcal{P}^+.$

Theorem: $\mathcal{U}^+ \not\leq_{\mathrm{FM}} \mathcal{A}^+$

Proof. Suppose that $\operatorname{Tr}:\mathcal{U}^+\to\mathcal{A}^+$ is faithful and modular.

Programs $P = \{a \leftarrow b\}$ and $Q = \{b \leftarrow\}$ satisfy M1–M4.

Thus ${\rm Tr}(P\cup Q)={\rm Tr}(P)\cup {\rm Tr}(Q)$ which are disjoint and atomic.

Now $a \in LM(P \cup Q) \implies a \in LM(Tr(P) \cup Tr(Q))$

 \implies a \leftarrow belongs to Tr(P) or to Tr(Q)

 \implies a $\in LM(Tr(P))$ or a $\in LM(Tr(Q))$

 $\Longrightarrow \quad \mathsf{a} \in \mathrm{LM}(P) \text{ or } \mathsf{a} \in \mathrm{LM}(Q) \text{,}$

a contradiction.

Expressiveness of Positive Programs (Continued)

 \rightarrow However, a faithful and **non-modular** translation function from \mathcal{U}^+ to \mathcal{A}^+ is still possible:

$$\operatorname{Tr}_{\operatorname{LM}}(P) = \{ \mathsf{a} \leftarrow | \mathsf{a} \in \operatorname{LM}(P) \}.$$

- For the programs P and Q in the preceding counter-example: $\operatorname{Tr}_{\mathrm{LM}}(P) = \emptyset$, $\operatorname{Tr}_{\mathrm{LM}}(Q) = \{\mathsf{b} \leftarrow\}$ and $\operatorname{Tr}_{\mathrm{LM}}(P \cup Q) = \{\mathsf{a} \leftarrow; \mathsf{b} \leftarrow\} \neq \operatorname{Tr}_{\mathrm{LM}}(P) \cup \operatorname{Tr}_{\mathrm{LM}}(Q)$.
- ightharpoonup Moreover, it can be established that $\mathcal{B}^+ \not\leq_{\mathrm{FM}} \mathcal{U}^+$ and $\mathcal{P}^+ <_{\mathrm{PFM}} \mathcal{B}^+$.
- > The resulting expressive power hierarchy for positive programs:

$$\mathcal{A}^+ <_{PFM} \mathcal{U}^+ <_{PFM} \mathcal{B}^+ =_{PFM} \mathcal{P}^+.$$

- 16 -

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

Summary of our Results for Normal Programs

- $ightharpoonup \mathcal{A} \subset \mathcal{U} \subset \mathcal{B} \subset \mathcal{P} \implies \mathcal{A} <_{\text{PFM}} \mathcal{U} <_{\text{PFM}} \mathcal{B} <_{\text{PFM}} \mathcal{P}.$
- ightharpoonup Non-binary rules can be translated away: $\mathcal{P} \leq_{PFM} \mathcal{B}$.
- \succ Binary and unary rules cannot be translated away in a **faithful** and modular way: $\mathcal{B} \not\leq_{\mathrm{FM}} \mathcal{U}$ and $\mathcal{U} \not\leq_{\mathrm{FM}} \mathcal{A}$.
- \succ It is straightforward to encode propositional satisfiability problems as (atomic) normal programs: $\mathcal{SC} \leq_{\mathrm{PFM}} \mathcal{A}$.
- ightharpoonup Due to non-monotonicity $\mathcal{A} \not\leq_{\mathrm{FM}} \mathcal{SC}$.
- > The resulting hierarchy of the five classes under consideration:

$$\mathcal{SC} <_{\text{PFM}} \mathcal{A} <_{\text{PFM}} \mathcal{U} <_{\text{PFM}} \mathcal{B} =_{\text{PFM}} \mathcal{P}.$$

6. YET ANOTHER CHARACTERIZATION OF STABILITY

Definition: Given a supported model M of P, a function # from $M \cup SR(P, M)$ to \mathbb{Z}^+ is a **level numbering** w.r.t. $M \iff$

- 1. $\forall a \in M$: $\#a = \min\{\#r \mid r \in SR(P, M) \text{ and } a = \operatorname{head}(r)\}$ and
- 2. $\forall r \in SR(P, M)$:

$$\#r = \begin{cases} \max\{\#\mathsf{b} \mid \mathsf{b} \in \mathrm{body}^+(r)\} + 1, \text{ if } \mathrm{body}^+(r) \neq \emptyset. \\ 1, \text{ otherwise.} \end{cases}$$

In addition atoms, level numbers are assigned to rules.

- 18 -

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

Characterization of Stability (Continued)

Theorem: If M is a stable model of P, then M is a supported model of P and there exists a unique level numbering # w.r.t. M:

- 1. For $a \in M$, #a is defined as for the members of $lfp(T_{PM})$.
- 2. For $r \in SR(P, M)$, $\#r = \max[\{1\} \cup \{\#b + 1 \mid b \in body^+(r)\}]$.

If M is a supported model of P and there is a level numbering # w.r.t. M, then # is unique and M is a stable model of P.

Example: Recall $P = \{r_1, r_2\}$, where $r_1 = \mathsf{a} \leftarrow \mathsf{b}$ and $r_2 = \mathsf{b} \leftarrow \mathsf{a}$, and the second supported model $M = \{\mathsf{a}, \mathsf{b}\}$ of P.

The requirements for a level numbering w.r.t. M lead to four equations: $\#a = \#r_1$, $\#r_1 = \#b + 1$, $\#b = \#r_2$, and $\#r_2 = \#a + 1$.

There is no solution $\implies M$ is not stable.

7. NON-MODULAR TRANSLATION FUNCTIONS

- > Despite the preceding intranslatability results we will seek for polynomial, faithful and *non-modular* (PF) translation functions.
- ightharpoonup The first goal is to translate any normal program P into an atomic one $\mathrm{Tr}_{\mathrm{AT}}(P)$.
- The preceding characterization of stable models suggests a translation that consists of two fairly independent parts:
 - 1. The first part captures a supported model M of P.
 - 2. The second part checks if one can assign a level numbering (as described above) for atoms $a \in M$ and rules $r \in SR(P, M)$.
- ightharpoonup The result is to be a polynomial and faithful translation function such that $||\operatorname{Tr}(P)||$ is of order $||P|| \times \log_2 |\operatorname{Hb}(P)|$.

- 20 -

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

Capturing Supported Models: $Tr_{SUPP}(P)$

ightharpoonup The complementary atom \overline{a} is defined for each $a \in Hb(P)$:

$$\overline{a} \leftarrow \sim a$$
.

ightharpoonup A rule $r \in P$ is translated as follows:

$$\operatorname{bt}(r) \leftarrow \sim \overline{\operatorname{body}^+(r)}, \sim \operatorname{body}^-(r),$$
 $\overline{\operatorname{bt}(r)} \leftarrow \sim \operatorname{bt}(r), \text{ and}$
 $\operatorname{head}(r) \leftarrow \sim \overline{\operatorname{bt}(r)}$

where bt(r) is a new atom denoting that "the body of r is true".

> New atoms are necessary here in order to avoid quadratic blow-up in the rest of the translation.

Binary Counters: $Tr_{CTR}(P)$

- ightharpoonup The number of bits $\nabla P = \lceil \log_2(|\mathrm{Hb}(P)| + 2) \rceil$.
- We introduce a binary counter (two vectors of atoms) $\mathsf{ctr}(\mathsf{a}) = \mathsf{ctr}(\mathsf{a})_1 \dots \mathsf{ctr}(\mathsf{a})_{\nabla P} \text{ and } \overline{\mathsf{ctr}(\mathsf{a})} = \overline{\mathsf{ctr}(\mathsf{a})_1} \dots \overline{\mathsf{ctr}(\mathsf{a})_{\nabla P}}$ for each $\mathsf{a} \in \mathsf{Hb}(P)$.
- The value of ctr(a) is chosen if $a \in M$, i.e. \overline{a} cannot be derived: a subprogram $SEL_{\nabla P}(ctr(a), \overline{a})$ does the job.
- ightharpoonup Similarly, we need to define another counter nxt(a) that takes the value of ctr(a) incremented by one: $NXT_{\nabla P}(ctr(a), nxt(a), \overline{a})$.
- ightharpoonup For $r \in P$ with $\operatorname{body}^+(r) \neq \emptyset$, we need $\operatorname{SEL}_{\nabla P}(\operatorname{ctr}(r), \overline{\operatorname{bt}(r)})$.
- ightharpoonup For $r \in P$ with $\operatorname{body}^+(r) = \emptyset$, $\operatorname{FIX}_{\nabla P}(\operatorname{ctr}(r), 1, \overline{\operatorname{bt}(r)})$ is enough.

- 22 -

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

Stabiilit mallit vs. toteutuvuusongelma

Checking Maximality: $Tr_{MAX}(P)$

- ightharpoonup The value of ctr(r) is supposed to be #r in binary.
- > If $\operatorname{body}^+(r) \neq \emptyset$, we need for each $\mathsf{b} \in \operatorname{body}^+(r)$ subprograms $\operatorname{LT}_{\nabla P}(\operatorname{ctr}(r),\operatorname{nxt}(\mathsf{b}),\overline{\operatorname{bt}(r)})$ and $\operatorname{EQ}_{\nabla P}(\operatorname{ctr}(r),\operatorname{nxt}(\mathsf{b}),\overline{\operatorname{bt}(r)})$ plus the following rules:

$$\begin{split} \mathbf{x} &\leftarrow \sim \mathbf{x}, \sim \overline{\mathsf{bt}(r)}, \sim \overline{\mathsf{lt}(\mathsf{ctr}(r), \mathsf{nxt}(\mathsf{b}))_1}; \\ \mathsf{max}(r) &\leftarrow \sim \overline{\mathsf{bt}(r)}, \sim \overline{\mathsf{eq}(\mathsf{ctr}(\mathsf{r}), \mathsf{nxt}(\mathsf{b}))}; \ \mathsf{and} \\ \mathbf{x} &\leftarrow \sim \mathbf{x}, \sim \overline{\mathsf{bt}(r)}, \sim \mathsf{max}(r). \end{split}$$

ightharpoonup The case that $\operatorname{body}^+(r) = \emptyset$ is handled by $\operatorname{Tr}_{\operatorname{CTR}}(P)$.

Checking Minimality: $\operatorname{Tr}_{MIN}(P)$

- \rightarrow The value of ctr(a) is supposed to be #a in binary.
- For each rule r and $\mathtt{a} = \mathrm{head}(r)$, we need the subprograms $\mathrm{LT}_{\nabla\!P}(\mathsf{ctr}(r),\mathsf{ctr}(\mathtt{a}),\overline{\mathsf{bt}(r)})$ and $\mathrm{EQ}_{\nabla\!P}(\mathsf{ctr}(r),\mathsf{ctr}(\mathtt{a}),\overline{\mathsf{bt}(r)})$ in addition to the following rules:

$$y \leftarrow \sim y, \sim \overline{bt(r)}, \sim \overline{lt(ctr(r), ctr(a))_1}$$
 and $min(a) \leftarrow \sim \overline{bt(r)}, \sim \overline{eq(ctr(r), ctr(a))}.$

ightharpoonup For each $a \in Hb(P)$, we introduce the rule $y \leftarrow \sim y, \sim \overline{a}, \sim min(a)$.

The translation function $\operatorname{Tr}_{\operatorname{AT}}$ defined by $\operatorname{Tr}_{\operatorname{AT}}(P) = \operatorname{Tr}_{\operatorname{SUPP}}(P) \cup \operatorname{Tr}_{\operatorname{CTR}}(P) \cup \operatorname{Tr}_{\operatorname{CTR}}(P) \cup \operatorname{Tr}_{\operatorname{MIN}}(P)$ is both sub-quadratic (thus also polynomial) and faithful.

- 24 -

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

Non-Modular Translation Functions (Continued)

 \succ The next objective is to embed \mathcal{A} into \mathcal{SC} .

Definition: For an atomic normal program $P \in \mathcal{A}$ and an atom $a \in Hb(P)$, let $Def_P(a) = \{r \in P \mid head(r) = a\}$,

$$\begin{split} \operatorname{Tr}_{\operatorname{CL}}(\mathsf{a},P) &= \{\mathsf{a} \vee \neg \mathsf{bt}(r) \mid \mathsf{a} \in \operatorname{Hb}(P) \text{ and } r \in \operatorname{Def}_P(\mathsf{a})\} \cup \\ &\quad \{\neg \mathsf{a} \vee \bigvee \{\mathsf{bt}(r) \mid r \in \operatorname{Def}_P(\mathsf{a})\} \mid \mathsf{a} \in \operatorname{Hb}(P)\} \cup \\ &\quad \{\mathsf{bt}(r) \vee \bigvee \mathsf{body}^-(r) \mid r \in \operatorname{Def}_P(\mathsf{a})\} \cup \\ &\quad \{\neg \mathsf{bt}(r) \vee \neg \mathsf{c} \mid r \in \operatorname{Def}_P(\mathsf{a}) \text{ and } \mathsf{c} \in \operatorname{body}^-(r)\}, \end{split}$$

and
$$\operatorname{Tr}_{\operatorname{CL}}(P) = \bigcup_{\mathsf{a} \in \operatorname{Hb}(P)} \operatorname{Tr}_{\operatorname{CL}}(\mathsf{a}, P)$$
.

 $\mathcal{SC} = \mathcal{SC}$, $\mathcal{P} \leq_{PF} \mathcal{SC}$, and $\mathcal{SC} =_{PF} \mathcal{A} =_{PF} \mathcal{U} =_{PF} \mathcal{B} =_{PF} \mathcal{P}$.

8. RELATED WORK

- ➤ I. Niemelä [AMAI, 1999]: Logic Programs with Stable Model Semantics as a Constraint Programming Paradigm.
 - A counter-example which shows that normal programs cannot be translated into sets of clauses in a faithful and modular way.
 - Capturing propositional satisfiability with normal programs.
- > S. Brass and J. Dix [JLP, 1999]: Semantics of (Disjunctive) Logic Programs Based on Partial Evaluation.

Example: In partial evaluation, a rule $a \leftarrow b, \sim c$ is replaced by

$$\mathsf{a} \leftarrow \sim \mathsf{b}_1, \sim \mathsf{c} \ \mathsf{and} \ \mathsf{a} \leftarrow \sim \mathsf{b}_1, \sim \mathsf{c}$$

if the definition of b consists of $b \leftarrow \sim b_1$ and $b \leftarrow \sim b_2$.

An exponential space is needed in the worst case.

- 26 -

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

Related Work (Continued)

➤ G. Antoniou et al. [ACM TOCL, 2001]: Representation Results for Defeasible Logic.

They study transformations on a class of defeasible theories:

- 1. Correctness: $D \equiv_{L(D)} \operatorname{Tr}(D)$.
- 2. Incrementality: $D_1 \cup D_2 \equiv_{L(D_1) \cup L(D_2)} \operatorname{Tr}(D_1) \cup \operatorname{Tr}(D_2)$.
- 3. Modularity: $D_1 \cup D_2 \equiv_{L(D_1) \cup L(D_2)} D_1 \cup \text{Tr}(D_2)$.
- The semantics of defeasible theories is quite different.
- The notion of correctness is close to our notion of faithfulness.
- The other two conditions are semantic rather than syntactic.

Related Work (Continued)

- R. Ben-Eliyahu and R. Dechter [AMAI, 1994]: *Propositional semantics for disjunctive logic programs*.
 - Binary numbers are not used \implies at least quadratic encoding.
 - The stable models of P and the classical models of $\mathrm{Tr}_{\mathrm{ED}}(P)$ are not in a bijective relationship.

Example: Let $P = \{a \leftarrow b, c; b \leftarrow d; c \leftarrow d; d \leftarrow \sim e; d \leftarrow a\}$. The atoms b and c in the unique stable model $M = \{a, b, c, d\}$ can be ordered in two different ways (in a **total ordering**).

- ➤ Y. Babovich, E. Erdem, and V. Lifschitz [NMR Workshop, 2000]: Fages' Theorem and Answer Set Programming.
 - Programs containing loops are not (necessarily) covered.
 - **Tightness** is based on a different numbering of atoms.

- 28 **-**

T-79.154 / Syksy 2003

Stabiilit mallit vs. toteutuvuusongelma

- ➤ U. Egly, et al. [AAAI, 2001]: Computing Stable Models with Quantified Boolean Formulas: Some Experimental Results.
 - In this approach, disjunctive stable models are captured with quantified Boolean formulas $\exists p_1 \dots \exists p_n \forall q_1 \dots \forall q_m \phi$.
 - In particular, the minimality requirement of disjunctive stable models is easy to express using such a formula.
 - From the point of view of complexity, the computation of stable models is easier in the case of normal logic programs.
- > F. Lin and Y. Zhao [AAAI, 2002]: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers.
 - The idea is to extend the completion of P [Clark, 1978] with loop formulas to exclude non-stable models.
 - In the worst case, there is an exponential number of loops (for instance, Hamiltonian paths for complete graphs).

9. CONCLUSIONS

- ➤ It is not easy to remove all positive body literals.
- ightharpoonup EPH (PFM): $\mathcal{SC} <_{PFM} \mathcal{A} <_{PFM} \mathcal{U} <_{PFM} \mathcal{B} =_{PFM} \mathcal{P}$.
- ightharpoonup EPH (PF): $\mathcal{SC} =_{PF} \mathcal{A} =_{PF} \mathcal{U} =_{PF} \mathcal{B} =_{PF} \mathcal{P}$.
- > Distinctive features of the counter-based approach:
 - 1. bijective relationship of models and
 - 2. $||\operatorname{Tr}(P)||$ is of order $||P|| \times \log_2 |\operatorname{Hb}(P)|$.
- > Transitive closure can be properly captured with classical models.
- \succ Experimental results with the implementations of ${\rm Tr}_{\rm AT}$ and ${\rm Tr}_{\rm CL}$ are promising, but further optimizations should be pursued for in order to really compete with SMODELS.