1. It has been previously established that the egf for the class of derangements is
\(\hat{d}(z) = e^{-z} /(1 - z) \). Derive from this a simple recurrence equation for the number
of derangements of \(n \) elements. Can you think of a combinatorial interpretation
for this formula?

2. Let \(h(z) = \sum_{n \geq m} h_n z^n \), where \(h_m \neq 0 \), be a formal Laurent series. Prove the
following results:
 (a) \(\text{Res}(h'(z)) = 0 \);
 (b) \(\text{Res}(h'(z)/h(z)) = m \).

3. Derive from Lagrange’s inversion formula for formal power series (Theorem 5.2
in the lecture notes) its following reformulation (useful e.g. in the analysis of tree
structures): Let \(f(z) \) and \(\phi(u) \) be formal power series satisfying \(\phi(0) = \phi_0 \neq 0 \)
and \(f(z) = z\phi(f(z)) \). Then for all \(n \geq 1 \):

\[
[z^n] f(z) = \frac{1}{n} [u^{n-1}] \phi(u)^n.
\]

(\text{Hint: Consider the power series } \psi(u) = \frac{u}{\phi(u)}.)

4. Derive formulas for the number of \(n \)-node rooted ordered trees and \(n \)-node binary
trees (rooted ordered trees where each node has 0, 1 or 2 descendants) directly
by applying the respective ogf-constructions and Lagrange’s inversion formula.