T-79.149 Discrete Structures (Autumn 2003)

The deadline of Problems 1-4 below is on November 20, 2003, at 17:00.
Be careful with the directions of the square brackets. See Definitions 7.1 and 7.2 in [Gar] for the meaning of the terms

“metric” and “continuous function between metric spaces”.

Definition used by Problem 1: For any set A, P(A) = {B | B C A},
Pu(A) ={B | (B C A) A (B is infinite) }, and Py(A) = {B| (B € P,(A))AN((A\ B) € P,(A))}.
We use Z to denote the set of integer numbers, and R to denote the set of real numbers. For
any a € R and for any ~€ {<,>,<,>}, we have R—~, ={z | (z € R)A(z ~a)}. The usual
intervals and the function £ from R x R to R>¢ are defined by requiring that for any real numbers
a and b, [a,b] = R>a N R<s, ]a,b] = Ruq N R<y, [a,b] = R>o N Ry, Ja,b[ = B>, N Rey, and
{(a,b) = |a — b|. The function ¢ from P(Z) x P(Z) to R> is defined by the condition
YV eP(Z): (((V,V)=0)A
1

(VW € PNV = (VW) = T i e e (VA W) U W V)}) '
Let S C R, and let f be a function from S to some metric space Y such that a function \ is a
metric on Y. Let x € R. We say that f is left-quasicontinuous w.r.t. A at x if and only if
(x€S)A(Ve € Ry 3 ERsoVzE ]z —0dyz[ : (2€S)ANS(2), f(x)) <¢)).
Respectively, f is right-quasicontinuous w.r.t. X at z if and only if
(x € SYAN(Ve € Rsg 6. € RsogVz € z,z+ 6. [ : (€ 8)ANA([f(2), f(2)) <e)).
Lemma used by Problem 1: ¢ is a metric on R, and ( is a metric on P(Z).

A proof, though beyond the scope of homework points, is easy to make.

Problems

1. Present one pair (f,g) such that f is a bijection from [0,1] to P,(Z)U {0} and left-
quasicontinuous w.r.t. ¢ at every z € ]0,1], g is a surjection from P(Z) to [0,1] and
continuous in the context of ( and ¢, whereas the restriction of g to P,(Z) U {0} is the
inverse of f, and moreover, for each V € Py(Z) U {0}, f is right-quasicontinuous w.r.t. ¢ at
g(V). Show that the presented (f, g) really is as required. (6 p)
Motivation beyond the scope of homework points: Let a function h from P(Z) to P(Z) represent the behaviour
of some 2-colour 1-dimensional cellular automaton. It is easy to show that h is continuous in the context of ¢, and
that consequently, g o h o f is left-quasicontinuous w.r.t. £ at every z€ ]0,1] and right-quasicontinuous w.r.t. £
at least at those points where f is right-quasicontinuous w.r.t. {. So, the cellular automaton could in some sense be
investigated by looking at some approximate curves for g o h o f. Sections 9.3 and 11.2 in [Gar] are closely related
to this subject. Section 11.2 has some pointers to nowhere, the “8.3..” pointers being meaningfully redirectable to
Section 9.3 by means of a certain recoding. See also Theorem 7.3 in [Gar] which is about the same as the famous
Curtis-Hedlund-Lyndon Theorem and can be shown to hold in the context of {, too. In fact, ¢ is a 2-colour-specific
version of the metric used in the oldest known published detailed proof of the Curtis-Hedlund-Lyndon Theorem,
i.e. the proof of Theorem 3.4 of [Hed] on pp. 324-325 in [Hed].

2. Let us consider Section 2 in [MazTer]. Present some one-dimensional impulse cellular au-
tomaton that constructs the basic signal illustrated by Figure 1. Explain the way of con-
struction in this special case. (6 p)

All needed definitions are in Section 2 in [MazTer], too.

3. Present some cellular automaton that emulates the mobile automaton on page 73 in [Wol].
Explain the mechanism of emulation in this special case. (6 p)

4. Present some cellular automaton that emulates the substitution system determined by rule
(d) on page 83 in [Wol]. Explain the mechanism of emulation in this special case. (6 p)
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