T-79.149 Discrete Structures (Autumn 2003)

The deadline of Problems 1-4 below is on November 20, 2003, at 17:00.

Be careful with the directions of the square brackets. See Definitions 7.1 and 7.2 in [Gar] for the meaning of the terms "metric" and "continuous function between metric spaces".

Definition used by Problem 1: For any set A, $\mathcal{P}(A) = \{B \mid B \subseteq A\}$, $\mathcal{P}_{\omega}(A) = \{B \mid (B \subseteq A) \land (B \text{ is infinite})\}$, and $\mathcal{P}_{\psi}(A) = \{B \mid (B \in P_{\omega}(A)) \land ((A \setminus B) \in P_{\omega}(A))\}$. We use Z to denote the set of integer numbers, and R to denote the set of real numbers. For any $a \in R$ and for any $forall \in \{<,>,\leq,\geq\}$, we have $R_{forall a} = \{x \mid (x \in R) \land (x \frown a)\}$. The usual intervals and the function ℓ from $R \times R$ to $R_{\geq 0}$ are defined by requiring that for any real numbers a and b, forall a, foral

 $\forall \, V \in \mathcal{P}(Z) \, : \, \left(\zeta(V,V) = 0 \right) \, \land \\ \left(\forall \, W \in (\mathcal{P}(Z) \setminus \{V\}) \, : \, \zeta(V,W) = \frac{1}{1 + \min\{|k| \mid k \in (V \setminus W) \cup (W \setminus V)\}} \right).$ Let $S \subseteq R$, and let f be a function from S to some metric space Y such that a function λ is a

Let $S \subseteq R$, and let f be a function from S to some metric space Y such that a function λ is a metric on Y. Let $x \in R$. We say that f is left-quasicontinuous w.r.t. λ at x if and only if $(x \in S) \wedge (\forall \varepsilon \in R_{>0} \exists \delta_{\varepsilon} \in R_{>0} \forall z \in]x - \delta_{\varepsilon}, x[: (z \in S) \wedge (\lambda(f(z), f(x)) < \varepsilon))$. Respectively, f is right-quasicontinuous w.r.t. λ at x if and only if $(x \in S) \wedge (\forall \varepsilon \in R_{>0} \exists \delta_{\varepsilon} \in R_{>0} \forall z \in]x, x + \delta_{\varepsilon}[: (z \in S) \wedge (\lambda(f(z), f(x)) < \varepsilon))$.

Lemma used by Problem 1: ℓ is a metric on R and ℓ is a metric on $\mathcal{P}(Z)$

Lemma used by Problem 1: ℓ is a metric on R, and ζ is a metric on $\mathcal{P}(Z)$.

A proof, though beyond the scope of homework points, is easy to make.

Problems

- 1. Present one pair $\langle f,g \rangle$ such that f is a bijection from [0,1] to $\mathcal{P}_{\omega}(Z) \cup \{\emptyset\}$ and left-quasicontinuous w.r.t. ζ at every $x \in]0,1]$, g is a surjection from $\mathcal{P}(Z)$ to [0,1] and continuous in the context of ζ and ℓ , whereas the restriction of g to $\mathcal{P}_{\omega}(Z) \cup \{\emptyset\}$ is the inverse of f, and moreover, for each $V \in \mathcal{P}_{\psi}(Z) \cup \{\emptyset\}$, f is right-quasicontinuous w.r.t. ζ at g(V). Show that the presented $\langle f,g \rangle$ really is as required. (6 p) Motivation beyond the scope of homework points: Let a function f from f for f to f represent the behaviour of some 2-colour 1-dimensional cellular automaton. It is easy to show that f is continuous in the context of f, and that consequently, f is left-quasicontinuous w.r.t. f at every f logical and right-quasicontinuous w.r.t. f at least at those points where f is right-quasicontinuous w.r.t. f So, the cellular automaton could in some sense be investigated by looking at some approximate curves for f so f Sections 9.3 and 11.2 in [Gar] are closely related to this subject. Section 11.2 has some pointers to nowhere, the "8.3..." pointers being meaningfully redirectable to Section 9.3 by means of a certain recoding. See also Theorem 7.3 in [Gar] which is about the same as the famous Curtis-Hedlund-Lyndon Theorem and can be shown to hold in the context of f, too. In fact, f is a 2-colour-specific version of the metric used in the oldest known published detailed proof of the Curtis-Hedlund-Lyndon Theorem, i.e. the proof of Theorem 3.4 of [Hed] on pp. 324–325 in [Hed].
- Let us consider Section 2 in [MazTer]. Present some one-dimensional impulse cellular automaton that constructs the basic signal illustrated by Figure 1. Explain the way of construction in this special case.
 (6 p)
 All needed definitions are in Section 2 in [MazTer], too.
- 3. Present some cellular automaton that emulates the mobile automaton on page 73 in [Wol]. Explain the mechanism of emulation in this special case. (6 p)
- 4. Present some cellular automaton that emulates the substitution system determined by rule (d) on page 83 in [Wol]. Explain the mechanism of emulation in this special case. (6 p)

References

- [Gar] Max Garzon, Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks, Springer-Verlag, Berlin, Germany, 1995, xiv+272 pp.

 You are supposed to be already familiar with this book.
- [Hed] Gustav Arnold Hedlund, "Endomorphisms and Automorphisms of the Shift Dynamical System," *Mathematical Systems Theory*, Vol. 3, No. 4, December 1969, pp. 320–375. The December 1969 issue can be found in the main library of HUT (in a closed stack) and in two libraries in University of Helsinki (Department of Computer Science and Department of Mathematics).
- [MazTer] Jacques Mazoyer and Véronique Terrier, "Signals in One-Dimensional Cellular Automata," *Theoretical Computer Science*, Vol. 217, No. 1, March 1999, pp. 53–80.

 A PDF version of the article is available e.g. via http://lib.hut.fi/.
- [Wol] Stephen Wolfram, A New Kind of Science, Wolfram Media, Champaign, IL, USA, 2002, xiv+2+1197+67 pp.
 You are supposed to be already familiar with this book.