1. As is well known, the ordinary generating function of the Fibonacci numbers is \(f(z) = \frac{z}{1 - z - z^2} \). Derive from this fact an estimate for the size of the Fibonacci numbers \(f_n, n \geq 0 \), based on information about the poles of the function \(f(z) \).

2. The exponential generating function of the Bernoulli numbers is \(\hat{b}(z) = \frac{z}{e^z - 1} \). Derive from this fact an estimate for the size of the numbers \(b_n \). How precise can you make your estimate?

3. Theorem 6.7 of the lecture notes, concerned with estimating the coefficients of meromorphic generating functions, claims that if function \(f(z) = \sum_{n \geq 0} f_n z^n \) has a pole of order \(m \) at \(z_0 \neq 0 \), then its contribution to the coefficient \(f_n \) is

\[
\text{Res}_{z = z_0} \frac{f(z)}{z^{n+1}} = z_0^{-n} P(n),
\]

where \(P(n) \) is a polynomial of degree \(m - 1 \). Prove this claim (i.e. the fact that the residue is of the required form) when (a) \(m = 1 \), (b) \(m \geq 1 \). In the case \(m = 1 \) verify also the explicit formula given for the polynomial (which in this case is just a constant), \(P = \text{Res}(f; z_0)/z_0 \). (Hint: If you wish, you can follow the derivation given in H. Wilf’s book *generatingfunctionology*, page 174.)