4 Problem:

Prove, without appealing to Rice’s theorem, that the following problem is undecidable:

Given a Turing machine M; does M accept the empty string?

Solution:

First we define a language $L = \{ M | M \text{ halts with the input } \varepsilon \}$. Now, L is recursive if and only if the decision problem in the exercise statement is decisive. Next we show that the language $H = \{ Mw | M \text{ halts with input } w \}$ can be recursively reduced to L (denoted $H \leq_m L$) so L is at least as difficult as H. Since H is not recursive, L may not be recursive, either.

The concept of a recursive reduction is defined as follows: Let $A \subseteq \Sigma^*$ and $B \subseteq \Gamma^*$ be languages. Now $A \leq_m B$ if and only if there exists a recursive function $f : \Sigma^* \rightarrow \Gamma^*$ such that

$$\forall w \in \Sigma^* : w \in A \iff f(w) \in B.$$

In this case we want to find a function f such that $f(Mw) \in L$ if and only if $Mw \in H$. In practice this means that we want to find a systematic way to construct a Turing machine M' that halts with an empty input exactly when M halts with $w = w_1w_2 \cdots w_n$.

Fortunately, this is an easy thing to do: M' starts by writing w to its tape and after that it simulates M. Now M' stops only if M stops.

Formally, f can be defined as:

$$f((Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej}), w_1w_2 \cdots w_n) = (Q', \Sigma, \Gamma, \delta', q_0', q_{acc}', q_{rej}')$$

where

$$Q' = Q \cup \{ q'_i | 0 \leq i \leq n \}$$

$$\delta' = \delta \cup \{ (q'_i, \varepsilon, q'_{i+1}, w_{i+1}, R) | 0 \leq i < n \}$$

$$\cup \{ (q'_{n}, x, q'_{n}, x, L) | x \in \Gamma \cup \{ \varepsilon \} \}$$

$$\cup \{ (q'_{n}, >, q_0, >, R) \}$$

Since we add only a finite number of states and transitions to M (n has to be finite), f is trivially recursive.

5. Problem: Prove the following connections between recursive functions and languages:

(i) A language $A \subseteq \Sigma^*$ is recursive ("Turing-decidable"), if and only its characteristic function

$$\chi_A : \Sigma^* \rightarrow \{ 0, 1 \}, \quad \chi_A(x) = \begin{cases}
1, & \text{if } x \in A; \\
0, & \text{if } x \notin A
\end{cases}$$

is a recursive ("Turing-computable") function.

(ii) A language $A \subseteq \Sigma^*$ is recursively enumerable ("semidecidable", "Turing-recognisable"), if and only if either $A = \emptyset$ or there exists a recursive function $g : \{ 0, 1 \}^* \rightarrow \Sigma^*$ such that

$$A = \{ g(x) | x \in \{ 0, 1 \}^* \}.$$
Solution: We start by defining five simple helper machines:

- **1** writes '1' to the input tape, moves the read/write head to right and stops.
- **0** writes '0' to the tape and stops.
- **C** empties the input tape, moves the head to the beginning of the tape and stops.
- **NEXT** reads the input \(x \in \Sigma^*\) and replaces it with the lexicographic successor of \(x\).
- **Cmp\(i,j\)** compares the contents of the input tapes \(i\) and \(j\) of a multi-tape Turing machine and accepts if they are identical.

Since the machines are simple, they are not presented here.

(i) \(\Rightarrow\) Let \(A \subseteq \Sigma^*\) be a recursive language. Then there exists a Turing machine \(M_A\):

\[
M_A = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej} \rangle
\]

such that

\[
\forall w \in \Sigma^* : w \in L \iff (q_0, w) \vdash^* M_A (q_{acc}, \alpha)
\]
\[
w \notin L \iff (q_0, w) \vdash^* M_A (q_{rej}, \alpha)
\]

We construct a machine \(M\) by combining \(M_A\) with machines \(1, 0, C\) as follows:

If \(w \in L\), then \(M_A\) accepts \(w\). After that \(M\) clears the tape and writes 1 to the tape. Otherwise 0 is written. Since \(A\) is recursive, \(M_A\) halts always so also \(M\) halts and it computes the function \(\chi(w) = \begin{cases} 1, & w \in A \\ 0, & w \notin A \end{cases}\) that is the characteristic function of \(A\).

(ii) If \(A = \emptyset\), then trivially \(A \in \text{RE}\) and \(g(x) = 0\) is its characteristic function.

If there exists a function \(g\) that fulfills the conditions, then there exists a Turing machine \(M_g\) that computes \(g\). We can trivially modify it so that it becomes a 2-tape machine \(M_g^{2,3}\) that computes \(g\) but stores the result in the second tape instead of the first. We now construct a 3-tape machine as follows:

Now \(M\) accepts \(w\) whenever \(\chi(w) = 1\) and rejects it when \(\chi(w) = 0\), so \(M\) decides the language \(A\) and \(A\) is recursive.

(iii) Suppose that the function \(\chi(w)\) is recursive. Then there exists a Turing machine \(M_{\chi}\) that computes it. We can now construct a machine \(M\) as follows:
The machine gets its input from its first tape and it stays untouched for the whole computation. In each iteration M_A replaces the bit string x on the second tape by its lexicographic successor y, computes $g(y)$ and writes the output on the third tape. Finally, the contents of tapes 1 and 3 are compared and if they match, the word is accepted, otherwise the iteration proceeds into the next round.

[$=\text{\#}$] Consider the word $w \in A$. Suppose that a recursive function g that fulfills the conditions exists. Then $w = g(x)$ for some $x = x_1x_2 \cdots x_n$ where n is finite. Since each finite string has a finite number of predecessors in the lexicographic order, NEXT eventually generates x. $M_{2,3}$ generates w on the third tape and M_A accepts the word. Thus, M_A recognizes the language A so $A \in RE$.

[\Rightarrow] Next, suppose that $A \in RE - \{\emptyset\}$. Then there exists a Turing machine M_A that recognizes it. We now define a helper machine $M_{A,i}$ that simulates M_A for i steps. The machine $M_{A,i}$ accepts x if M_A accepts it using at most i steps, and rejects it otherwise. We note that $M_{A,i}$ always halts.

We construct the function g with the help of $M_{A,i}$. Every input x and bound i is encoded into bit strings using the function $c(x, y) = 0^x10^y$. We define that $g(c(x, y)) = x$, if $M_{A,y}$ accepts x. We define that $g': \{0, 1\}^* \rightarrow \{0, 1\}^*$ is the function:

$$g'(w) = \begin{cases} x, & \text{if } w = 0^x10^y \text{ and } M_{A,y}(x) \text{ accepts} \\ x_0, & \text{otherwise} \end{cases},$$

where $x_0 \in A$. Finally, $g(x) = d(g'(x))$ where d is a function that maps a bit string 0^x into the xth element of Σ^* in the lexicographic order. The value of g' may be computed in a finite time since $M_{A,y}(x)$ always halts. Thus, g' is recursive and so also g is.

Note that while g always exists, it is not always possible to find it since in the general case it is an undecidable problem to find an element $x_0 \in A$ that is needed for the definition.