6. LASKETTAVUUSTEORIAA

Churchin–Turingin teesi: Mielivaltainen (riittävän vahva) laskulaitte Ξ Turingin kone.

Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.

Tärkeä sana: Pysähtyvä ja ei-pysähtyvä Turingin koneet.

Määritelmä 6.1 Turingin kone

\[M = (Q, \Sigma, \Gamma, \delta, q_0, \Delta, q_f) \]

on totaalin, jos se pysähtyy kaikilla syötteillä. Formaali kieli \(A \) on rekursiivisesti numeroitava, jos se voidaan tunnistaa jollakin Turingin koneella, ja rekursiivinen, jos se voidaan tunnistaa jollakin totaaliseella Turingin koneella.

Vaihtoehtoinen termistö: Palautetaan mielillä päätösongelmien (binaärivasteisten I/O-kuvausten) ja formaalien kielen vastaavuus: päätösongelmaa \(\Pi \) vastaa formaali kieli \(A_\Pi \) koostuu niistä syotteistä \(x_i \), joille ongelman \(\Pi \) vastaus on "kylä" (so. toivottuaste \(1 \)).

Päätösongelma \(\Pi \) on ratkeava, jos sitä vastaava formaali kieli \(A_\Pi \) on rekursiivinen, ja osittain ratkeava, jos \(A_\Pi \) on rekursiivisesti numeroitava. Ongelma, joka ei ole ratkeava, on ratkematon. (Huom.: ratkematon ongelma voi siis olla osittain ratkeava.)

Toisin sanoen; päätösongelma on ratkeava, jos sillä on totaalin, kaikilla syötteillä pysähtyvä ratkaisualgoritmi, ja osittain ratkeava, jos sillä on ratkaisualgoritmi joka "kylä"-tapauksissa vastaa aina olkein, mutta "ei"-tapauksissa voi jättää pysähtymättä.

6.2 Rekursiivisten ja rek. num. kielen perusominaisuuksia

Lause 6.1 Olkoot \(A, B \subseteq \Sigma^* \) rekursiivisia. Tällöin myös \(\overline{A} = \Sigma^* - A \), \(A \cup B \) ja \(A \cap B \) ovat rekursiivisia.

Todistus.

(i) Olkoon \(M_A \) totaalin Turingin kone, jolla \(L(M_A) = A \). Kielen \(\overline{A} \) tunnistava totaalin Turingin kone saadaan vaihtamalla \(M_A \) n hyväksyvää ja hyväksymättä oppuutta keskenään.

(ii) Olkoot \(M_A \) ja \(M_B \) totaaliset Turingin koneet, joilla \(L(M_A) = A \), \(L(M_B) = B \). Kielen \(A \cup B \) tunnistava totaalin Turingin kone \(M \) saadaan yhdistämällä \(M_A \) ja \(M_B \) toimimaan perakkain; jos \(M_A \) hyväksyy syötteen, myös \(M \) hyväksyy; jos \(M_A \) päätyy hyväksymättä, \(M \) simoi vielä \(M_B \)tä.

(iii) \(A \cap B = \overline{A} \cup \overline{B}. \)\]
Lause 6.2 Olkoot $A, B \subseteq \Sigma^*$ rekursiivisesti numeroituvia. Tällöin myös $A \cup B$ ja $A \cap B$ ovat rekursiivisesti numeroituvia.

Todistus. $A \cap B$ kuten Lause 6.1 ja $A \cup B$ kuten Lause 6.3, (HT)

Lause 6.3 Kieli $A \subseteq \Sigma^*$ on rekursiivinen, jos ja vain jos kielet A ja \overline{A} ovat rekursiivisesti numeroituvia.

Seuraus 6.4 Olkoon $A \subseteq \Sigma^*$ rekursiivisesti numeroituvan kieli, joka ei ole rekursiivinen. Tällöin kieli \overline{A} ei ole rekursiivisesti numeroituvaa.

6.3 Turingin koneiden koodaus
Tarkastellaan standardimalliia Turingin koneita, joiden syöteakosto on $\Sigma = \{0, 1\}$. Jokainen tällainen kone

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$$

voidaan esittää binäärijonoona:

Oletetaan, että $Q = \{q_0, q_1, \ldots, q_\ell\}$, missä $q_{acc} = q_{\ell-1}$ ja $q_{rej} = q_{\ell}$, ja että $\Gamma = \{\$, <\} = \{a_0, a_1, \ldots, a_m\}$, missä $a_0 = 0$, $a_1 = 1$, $a_2 = \$, ja $a_3 = \$. Merkitään lisäksi $\Delta_0 = L$ ja $\Delta_1 = R$.

Siirtymäfunktion δ arvojen koodaus: säännön

$$\delta(q_i, a_j) = (q_k, a_s, \Delta_t)$$

koodi on

$$c_{ij} = 0^{i+1}10^{i+1}10^{j+1}10^{i+1}10^{j+1}.$$

Koko koneen M koodi on

$$c_M = 111c_{00}11c_{01}11\ldots11c_{0n}11c_{10}11\ldots11c_{1m}11\ldots11c_{2n}211\ldots11c_{m-2}m111.$$
Eräs ei rekursiivisesti numeroitu kieli

Lemma 6.5 Kieli

\[D = \{ c \in \{0, 1\}^* \mid c \notin L(M_c) \} \]

ei ole rekursiivisesti numeroitu.

Todistus. Oletetaan, että olisi \(D = L(M) \) jollakin standardimalliolla Turingin koneella \(M \). Olkuon \(d \) koneen \(M \) binäärikoodi, so. \(D = L(M_d) \). Tällöin on

\[d \in D \iff d \notin L(M_d) = D. \]

Ristiriidasta seuraa, että kieli \(D \) ei voi olla rekursiivisesti numeroituva. □

6.4 Universaalit Turingin koneet

Aakkosten \(\{0, 1\} \) **universaalikielit** \(U \) määritellään:

\[U = \{ c_M w \mid w \in L(M) \}. \]

Olkuon A jokin aakkoston \(\{0, 1\} \) rekursiivisesti numeroituva kieli, ja olkuon \(M \) kielen A tunnistava standardimalliinen Turingin kone. Tällöin on

\[A = \{ w \in \{0, 1\}^* \mid c_M w \in U \}. \]

Myös kieli \(U \) on rekursiivisesti numeroituva. Kielen \(U \) tunnistavia Turingin koneita sanotaan **universaaliksi Turingin koneiksi**.
Lause 6.6 Kiele U on rekursiivisesti numeroituva.

Todistus. Kielten U tunnistava universaalikone M_U on helpointa kuvata kolmenauhaiseen mallina. (Standardointi tavalliseen tapaan.) Laskennan aluksi tarkastettaan syöte sijoitetaan koneen M_U ykkösauhan alkuun. Tämän jälkeen kone toimii seuraavasti:

1. Aluksi M_U tarkastaa, että syöte on muotoa cw, missä c on kelvollinen Turingin koneen koodi. Jos syöte ei ole kelvollista muotoa, M_U hylkää sen; muuten se kopii merkijonon $w = a_1 a_2 ... a_k \in \{0, 1\}^*$ kakkosauhalle muodossa $00010^k+110^k+1 ... 10^k+110000$.

2. Jos syöte on muotoa cw, missä $c = a_M$ jollakin koneella M, $M_U:n$ on selvitetään, hyväksyisikö kone M syötteen w. Tässä tarkoituksessa M_U säilyttää ykkösauhalla $M:n$ kuvausta c, kakkosauhalla simuloi $M:n$ nauhaa, ja kolmosauhalla säilyttää tietoa $M:n$ simuloidusta tilasta muodossa $q_0 \sim 0^i+1$ (aluksi siis M_U kirjoittaa kolmosauhalle tilan q_0 koodin 0).

3. Alkutoimien jälkeen M_U toimii vaihteuttaen, simuloiden kussakin vaiheessa yhden koneen M siirtymän. Vaiheen aluksi M_U etsii ykkösauhalla $M:n$ kuvauksesta kohdan, joka vastaa $M:n$ simulointua tilaa q_i ja merkidiä a_j. Oliko ykkösauhalla koodinkohdta $0^i+110^i+110^i+110^i+1$.

Tällöin M_U korvaa kolmosauhalla merkijonon 0^i+1 merkijonolla, 0^i+1, kakkosauhalla merkijonon 0^i+1 merkijonolla 0^i+1, ja siirtyä kakkosauhan nauhapäänä yhden simuloidun merkin vasemmalle, jos $t = 0$, ja oikealle, jos $t = 1$. Jos ykkösauhalla ei ole yhtään simulointuun tilaan q_j ityvää koodia, simuloiu M on tullut hyväksyvää tai hyväksyzään lopputilaan; tällöin $i = k + 1$ tai $i = k + 2$, missä q_k on viimeinen ykkösauhalla kuvattu tila. Kone M_U siirtyy vastaavasti lopputilaan q_{sqc} tai q_{sqj}.