4 Problem:
Prove, without appealing to Rice’s theorem, that the following problem is undecidable:

Given a Turing machine M; does M accept the empty string?

Solution:
First we define a language $L = \{ M \mid M \text{ halts with the input } \varepsilon \}$. Now, L is recursive if and only if the decision problem in the exercise statement is decisiive. Next we show that the language $H = \{ Mw \mid M \text{ halts with input } w \}$ can be recursively reduced to L (denoted $H \leq_m L$) so L is at least as difficult as H. Since H is not recursive, L may not be recursive, either.

The concept of a recursive reduction is defined as follows: Let $A \subseteq \Sigma^*$ and $B \subseteq \Gamma^*$ be languages. Now $A \leq_m B$ if and only if there exists a recursive function $f : \Sigma^* \to \Gamma^*$ such that

$$\forall w \in \Sigma^* : w \in A \iff f(w) \in B .$$

In this case we want to find a function f such that $f(Mw) \in L$ if and only if $Mw \in H$. In practice this means that we want to find a systematic way to construct a Turing machine M' that halts with an empty input exactly when M halts with $w = w_1w_2 \cdots w_n$.

Fortunately, this is an easy thing to do: M' starts by writing w to its tape and after that it simulates M. Now M' stops only if M stops.

Formally, f can be defined as:

$$f((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}}), w_1w_2 \cdots w_n) = (Q', \Sigma, \Gamma, \delta', q_0', q_{\text{acc}}', q_{\text{rej}}'),$$

where

$$Q' = Q \cup \{ q'_i \mid 0 \leq i \leq n \},$$

$$\delta' = \delta \cup \{ \langle q'_i, \varepsilon, q'_{i+1}, w_{i+1}, R \rangle \mid 0 \leq i < n \} \cup \{ \langle q'_n, x, q'_n, x, L \mid x \in \Gamma \cup \{ \varepsilon \} \} \cup \{ \langle q'_n, \varepsilon, q_0, \varepsilon, R \rangle \}.$$

Since we add only a finite number of states and transitions to M (n has to be finite), f is trivially recursive.

1. **Problem:** Prove the following connections between recursive functions and languages:

 (i) A language $A \subseteq \Sigma^*$ is recursive (“Turing-decidable”), if and only its characteristic function $\chi_A : \Sigma^* \to \{ 0, 1 \}$,

 $$\chi_A(x) = \begin{cases} 1, & \text{if } x \in A; \\ 0, & \text{if } x \notin A \end{cases}$$

 is a recursive (“Turing-computable”) function.

 (ii) A language $A \subseteq \Sigma^*$ is recursively enumerable (“semidecidable”, “Turing-recognisable”), if and only if there exists a recursive function $g : \{ 0, 1 \}^* \to \Sigma^*$ such that

 $$A = \{ g(x) \mid x \in \{ 0, 1 \}^* \}.$$
Solution: We start by defining five simple helper machines:

- 1 writes '1' to the input tape, moves the read/write head to right and stops.
- 0 writes '0' to the tape and stops.
- C empties the input tape, moves the head to the beginning of the tape and stops.
- NEXT reads the input $x \in \Sigma^*$ and replaces it with the lexicographic successor of x.
- $\text{Cmp}^{i,j}$ compares the contents of the input tapes i and j of a multi-tape Turing machine and accepts if they are identical.

Since the machines are simple, they are not presented here.

(i) \implies Let $A \subseteq \Sigma^*$ be a recursive language. Then there exists a Turing machine M_A:

$$M_A = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})$$

such that

$$\forall w \in \Sigma^* : w \in L \iff (q_0, w) \vdash^*_{M_A} (q_{\text{acc}}, \alpha) \quad \text{ja}$$

$$w \notin L \iff (q_0, w) \vdash^*_{M_A} (q_{\text{rej}}, \alpha)$$

We construct a machine M by combining M_A with machines 1, 0, C as follows:

If $w \in L$, then M_A accepts w. After that M clears the tape and writes 1 to the tape. Otherwise 0 is written. Since A is recursive, M_A halts always so also M halts and it computes the function $\chi(w) = \begin{cases} 1, & w \in A \\ 0, & w \notin A \end{cases}$ that is the characteristic function of A.

\Leftarrow Suppose that the function $\chi(w)$ is recursive. Then there exists a Turing machine M_χ that computes it. We can now construct a machine M as follows:

Now M accepts w whenever $\chi(w) = 1$ and rejects it when $\chi(w) = 0$, so M decides the language A and A is recursive.

(ii) If $A = \emptyset$, then trivially $A \in \text{RE}$ and $g(x) = 0$ is its characteristic function.

If there exists a function g that fulfills the conditions, then there exists a Turing machine M_g that computes g. We can trivially modify it so that it becomes a 2-tape machine $M_g^{2,3}$ that computes g but stores the result in the second tape instead of the first. We now construct a 3-tape machine as follows:
The machine gets its input from its first tape and it stays untouched for the whole computation. In each iteration M_A replaces the bit string x on the second tape by its lexicographic successor y, computes $g(y)$ and writes the output on the third tape. Finally, the contents of tapes 1 and 3 are compared and if they match, the word is accepted, otherwise the iteration proceeds into the next round.

[⇐] Consider the word $w \in A$. Suppose that a recursive function g that fulfills the conditions exists. Then $w = g(x)$ for some $x = x_1x_2 \cdots x_n$ where n is finite. Since each finite string has a finite number of predecessors in the lexicographic order, NEXT eventually generates x, $M^{2,3}_g$ generates w on the third tape and M_A accepts the word. Thus, M_A recognizes the language A so $A \in \text{RE}$.

[⇒] Next, suppose that $A \in \text{RE} - \{\emptyset\}$. Then there exists a Turing machine M_A that recognizes it. We now define a helper machine $M_{A,i}$ that simulates M_A for i steps. The machine $M_{A,i}$ accepts x if M_A accepts it using at most i steps, and rejects it otherwise. We note that $M_{A,i}$ always halts.

We construct the function g with the help of $M_{A,i}$. Every input x and bound i is encoded into bit strings using the function $c(x, y) = 0^i10^y$. We define that $g(c(x, y)) = x$, if $M_{A,y}$ accepts x. We define that $g' : \{0, 1\}^* \rightarrow \{0, 1\}^*$ is the function:

$$g'(w) = \begin{cases} x, & w = 0^i10^y \text{ and } M_{A,y}(x) \text{ accepts} \\ x_0, & \text{otherwise} \end{cases}$$

where $x_0 \in A$. Finally, $g(x) = d(g'(x))$ where d is a function that maps a bit string 0^i into the xth element of Σ^* in the lexicographic order. The value of g' may be computed in a finite time since $M_{A,y}(x)$ always halts. Thus, g' is recursive and so also g is.

Note that while g always exists, it is not always possible to find it since in the general case it is an undecidable problem to find an element $x_0 \in A$ that is needed for the definition.