Homework problems:

1. Convert the following grammar into Chomsky normal form:

 \[
 S \rightarrow AB \mid BA \mid \varepsilon \\
 A \rightarrow aS \\
 B \rightarrow bS
 \]

 Give also a simple verbal description of the language generated by the grammar.

2. Determine, using the CYK algorithm (“dynamic programming method”, Sipser p. 241, Lewis & Papadimitriou p. 155), whether the strings \(abab\), \(aabb\) and \(bbaab\) are generated by the grammar

 \[
 S \rightarrow AB \mid BA \mid a \mid b \\
 A \rightarrow BA \mid a \\
 B \rightarrow AB \mid b
 \]

 In the positive cases, give also the respective parse trees.

3. Design pushdown automata recognising the following languages:

 (a) \(\{wcw^R \mid w \in \{a,b\}^*\}\);
 (b) \(\{ww^R \mid w \in \{a,b\}^*\}\).

Demonstration problems:

4. Design an algorithm for testing whether a given a context-free grammar \(G = (V, \Sigma, P, S)\), generates a nonempty language, i.e. whether any terminal string \(x \in \Sigma^*\) can be derived from the start symbol \(S\).

5. Design a pushdown automaton corresponding to the grammar \(G = (V, \Sigma, P, S)\), where

 \[
 V = \{S, (,)^*, \cup, \emptyset, a, b\} \\
 \Sigma = \{(,),^*, \cup, \emptyset, a, b\} \\
 P = \{S \rightarrow (SS), S \rightarrow S^*, S \rightarrow (S \cup S), S \rightarrow \emptyset, S \rightarrow a, S \rightarrow b\}
 \]

6. Design a grammar corresponding to the pushdown automaton \(M = (Q, \Sigma, \Gamma, \Delta, s, F)\), where

 \[
 Q = \{s, q, f\}, \Sigma = \{a, b\}, \Gamma = \{a, b, c\}, F = \{f\}, \\
 \Delta = \{(s, e, a), (q, c), (q, a, c), (q, ac), (q, a, a), (q, aa)\} \\
 \{(q, a, b), (q, e), (q, b, c), (q, bc), (q, b, b), (q, bb)\} \\
 \{(q, b, a), (q, e), (q, e, c), (f, e)\}\}