Autumn 2003

T-79.148 Introduction to Theoretical Computer Science Tutorial 2 Problems

Homework problems:

- 1. Let $\Sigma = \{a, b\}$. Give some examples of strings from each of the following languages (at least three strings per language):
 - (a) $\{w \in \Sigma^* \mid w \text{ the number of } a$'s in w is odd and the number of b's is divisible of three};
 - (b) $\{w \in \Sigma^* \mid w \text{ contains exactly two occurrences of the substrings } ab and/or ba\};$
 - (c) $\{(ab)^n (ba)^n \mid n \ge 1\}$
 - (d) $\{w \in \Sigma^* \mid \exists u, v \in \Sigma^* \text{ s.e. } w = uvuv\};$
- 2. The reversal of a string $w \in \Sigma^*$, denoted w^R , is defined inductively by the rules:
 - (i) $\varepsilon^R = \varepsilon;$
 - (ii) if w = ua, where $u \in \Sigma^*$ and $a \in \Sigma$, then $w^R = au^R$.

It was proved in class (cf. also Lewis & Papadimitriou, p. 43) that for any strings $u, v \in \Sigma^*$ it is the case that $(uv)^R = v^R u^R$. Prove in a similar manner, by induction based on the above definition of reversal, the following facts:

- (a) $(w^R)^R = w;$
- (b) $(w^k)^R = (w^R)^k$, for any $k \ge 0$.
- 3. Let A be a countably infinite set and $B \subseteq A$. Prove that B must be either finite or countably infinite.

Demonstration problems:

- 4. Show that any alphabet Σ with at least two symbols is comparable to the binary alphabet Γ = {0, 1}, in the sense that strings over Σ can be easily encoded into strings over Γ and vice versa. How much can the length of a string change in your encoding? (I.e., if the length of a string w ∈ Σ* is |w| = n symbols, what is the length of the corresponding string w' ∈ Γ*?) Could you design a similar encoding if the target alphabet consisted of only one symbol, e.g. Γ = {1}?
- 5. Prove that the Cartesian product $\mathbb{N} \times \mathbb{N}$ is countably infinite. (*Hint:* Think of the pairs $(m, n) \in \mathbb{N} \times \mathbb{N}$ as embedded in the Euclidean (x, y) plane \mathbb{R}^2 . Enumerate the pairs by diagonals parallel to the line y = -x.) Conclude from this result that also the set \mathbb{Q} of rational numbers is countably infinite.
- 6. Let S be an arbitrary nonempty set.
 - (a) Give some injective (i.e. one-to-one) function $f: S \to \mathcal{P}(S)$.
 - (b) Prove that there cannot exist an injective function $g: \mathcal{P}(S) \to S$. (*Hint:* Assume that such a function g existed. Consider the set $R = \{s \in S \mid s \notin g^{-1}(s)\}$, and denote r = g(R). Is it then the case that $r \in R$?)

Observe, as a consequence of item (b), that the power set $\mathcal{P}(S)$ of any countably infinite set S is uncountable.