T-79.148 Spring 2002
Introduction to Theoretical Computer Science

Tutorial 9

Solutions to the demonstration problems

4. Problem: Prove that the class of context-free languages is not closed under intersections
and complements. (Hint: Represent the language {a*b*c¥ | k > 0} as the intersection of
two context-free languages.)

Solution: Let L = {a¥b*cF | k > 0}. This language has been proven context-free (see
compendium, p. 72). We can prove that context-free languages are not closed under inter-
section by finding two context-free languages L1 and Ly such that L = Ly N Ls. Languages
Ly = {a*bkc* | k > 0} and Ly = {a*b¥c* | k > 0} fulfill this condition.

A direct corollary is that the class of context-free languages cannot be closed under com-
plementation, either, since they are closed under union and Ly N Ly = L; U Ls.

Finally, we prove that L; and Ly are context-free by presenting context-free grammars
that generate them. The language L; is generated by G1 = ({S, A4, B,a,b,c},{a,b, c},
Py, S), where Py = {S — AB,A — aA | e,B — bBc | }. Similarily, Ly is generated by
G2 = ({S,A,B,a,b,c},{a,b,c}, P»,S), P, ={S — AB,A — aAb|e,B — ¢B | &}.

5. Problem: Design Turing machines NEXT and DUP that perform the following tasks:
(a) NEXT replaces a string given on the machine’s tape by its immediate lexicographic
SuCCessor;
(b) DUP duplicates the string given on the tape, thus e.g. replacing the string abb by
the string abbabb.

Solution:

(a) The lexicographic order <j, over a set 3* is formed in terms of a total order <C X xX.
Most commmonly, < is either numerical or alphabetic order. For example,

If¥={a,...,z}, thena<b<ec<--- <z
If ¥ ={0,1}, then 0 < 1

The lexicographic order <y, is defined as follows: Let z,y € ¥*, z = x1 - -z, and
Y =Y1-Ym. Now, x <p, y if one of the following conditions hold:

(i) n <m, or

(ii) » = m and there exists ¢ < n such that z; < y; and for all j < i, z; = y;.

For example, the lexicographic order over the words of the alphabet {0, 1} is defined

as follows:
,0,1,00,01,10,11,000,001,010,011, 100, 101, .. ..

The solution constructs a Turing machine that works with the alphabet {a,b}. How-
ever, it is easy to generalize the construction to work with any alphabet (details in
appendix).

NEXT: a,b/L
C,CL/R b,C/L ;,;/L

>8 <,a/L % >,>/R O

qo q1

QB.CC

In state g1 we have used a short-hand notation > to denote any symbol other than
the tape start symbol >. The machine works by changing all least significant c-letters



to a-letters while it stays in the state go. As soon as the first letter o < ¢ is found,
it is replaced by the alphabetically next letter. Finally, the tape read/write head is
returned to the start of the tape. (The reason for this is that it makes combining
Turing machines easier).

Consider how NEXT finds the successor for bacc:

(qO,QCCI/b) F (QO7 agab) F (q07 aagb) F (qla agbb)
F (g1, aabb) b (g1, >aabb) b (gace, aabb)

The result is bbaa.

(b) This solution supposes that ¥ = {a,b}. However, it is trivial to extend this to allow
also other alphabets.
The basic idea is that we copy one symbol to the end of the tape at a time. We
keep track of the position of the currently worked-upon symbol by replacing it by L.
We write the copy of the word initially using capital letters { A, B} since otherwise
we could not notice when the original word ends and the copy starts. Finally, all
upper case letters are replaced by their lower case equivalents and the read/write
head returned to the start of the tape.

DUP:

A,a/R
B,b/R  ,5/L

>8 <, </L >8 >,>/R>©>

g5 d6

Qacc

Consider how DUP works with the input abb:

F (g3, albA) F* (g3, alUbA<) F (g, allbAB) F* (go, abbAB)
F* (g0, abbABB) F (g5, abbaBB) F* (g5, abbabb<) F* (qacc, abbabd)

Appendix: generalizing solution 5a

Let ¥ be a finite alphabet and <C ¥* x ¥* be a full order. Since X is finite, < is well-
founded and it has both minimum a.,;, and maximum apa«. Let us define a successor
function f: (X — {amax}) — X as follows:

fla)=bsa<bA-Tec:a<cAhc<b

Since < is a full order, f(a) is unambiguous.

A Turing machine M that computes the lexicographic successor of the input z is defined



as follows: M = (Q’E7F75a 405 Gacc; qrej)a

Q = {90, 41, Gace, Grej }

r=x

8 = {(¢0> @max; 905 Amins R), (90, <, q1, Gmin, L)}
U{(q0;a,q1, f(a), L) | a € (£ — {@max})}
Ui(q1,a,q1,a,L) |a € (BU{<})}
U {(q1,>,qace, > R)}

We see that we can obtain the Turing machine that was presented in the solution 5a
directly from the above definition by setting amin = @, amax = ¢, f(a) = b, and f(b) = c.



