
T-79.148 Spring 2002
Introduction to Theoretical Computer Science
Tutorial 9
Solutions to the demonstration problems

4. Problem: Prove that the class of context-free languages is not closed under intersections
and complements. (Hint: Represent the language {akbkck | k ≥ 0} as the intersection of
two context-free languages.)

Solution: Let L = {akbkck | k ≥ 0}. This language has been proven context-free (see
compendium, p. 72). We can prove that context-free languages are not closed under inter-
section by finding two context-free languages L1 and L2 such that L = L1∩L2. Languages
L1 = {a∗bkck | k ≥ 0} and L2 = {akbkc∗ | k ≥ 0} fulfill this condition.

A direct corollary is that the class of context-free languages cannot be closed under com-
plementation, either, since they are closed under union and L1 ∩ L2 = L1 ∪ L2.

Finally, we prove that L1 and L2 are context-free by presenting context-free grammars
that generate them. The language L1 is generated by G1 = ({S, A,B, a, b, c}, {a, b, c},
P1, S), where P1 = {S → AB,A → aA | ε, B → bBc | ε}. Similarily, L2 is generated by
G2 = ({S, A,B, a, b, c}, {a, b, c}, P2, S), P2 = {S → AB,A → aAb | ε, B → cB | ε}.

5. Problem: Design Turing machines NEXT and DUP that perform the following tasks:

(a) NEXT replaces a string given on the machine’s tape by its immediate lexicographic
successor;

(b) DUP duplicates the string given on the tape, thus e.g. replacing the string abb by
the string abbabb.

Solution:

(a) The lexicographic order <L over a set Σ∗ is formed in terms of a total order <⊂ Σ×Σ.
Most commmonly, < is either numerical or alphabetic order. For example,

If Σ ={a, . . . , z}, then a < b < c < · · · < z

If Σ ={0, 1}, then 0 < 1

The lexicographic order <L is defined as follows: Let x, y ∈ Σ∗, x = x1 · · ·xn and
y = y1 · · · ym. Now, x <L y if one of the following conditions hold:

(i) n < m, or
(ii) n = m and there exists i ≤ n such that xi < yi and for all j < i, xi = yi.

For example, the lexicographic order over the words of the alphabet {0, 1} is defined
as follows:

ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, . . .

The solution constructs a Turing machine that works with the alphabet {a, b}. How-
ever, it is easy to generalize the construction to work with any alphabet (details in
appendix).

NEXT:

q0 q1 qacc

c, a/R
a, b/L
b, c/L
<, a/L

>,>/L

>,>/R

In state q1 we have used a short-hand notation > to denote any symbol other than
the tape start symbol >. The machine works by changing all least significant c-letters

to a-letters while it stays in the state q0. As soon as the first letter σ < c is found,
it is replaced by the alphabetically next letter. Finally, the tape read/write head is
returned to the start of the tape. (The reason for this is that it makes combining
Turing machines easier).
Consider how NEXT finds the successor for bacc:

(q0, ccab) ` (q0, acab) ` (q0, aaab) ` (q1, aabb)
` (q1, aabb) ` (q1, >aabb) ` (qacc, aabb)

The result is bbaa.

(b) This solution supposes that Σ = {a, b}. However, it is trivial to extend this to allow
also other alphabets.
The basic idea is that we copy one symbol to the end of the tape at a time. We
keep track of the position of the currently worked-upon symbol by replacing it by t.
We write the copy of the word initially using capital letters {A,B} since otherwise
we could not notice when the original word ends and the copy starts. Finally, all
upper case letters are replaced by their lower case equivalents and the read/write
head returned to the start of the tape.

DUP:

q0

q1 q2

q3 q4

q5 q6 qacc

a,t/R

<,A/L

<,</R

t, a/R

t,t/L

b,t/R

<,B/L

<,</R

t, b/R

t,t/L

A, a/R

B, b/R

A, a/R
B, b/R

<,</L

>,>/L

>,>/R

Consider how DUP works with the input abb:

(q0, abb) ` (q1,tbb) `∗ (q1,tbb<) ` (q2,tbbA) `∗ (q2,tbbA) ` (q0, abbA)
` (q3, atbA) `∗ (q3, atbA<) ` (q4, atbAB) `∗ (q0, abbAB)
`∗ (q0, abbABB) ` (q5, abbaBB) `∗ (q5, abbabb<) `∗ (qacc, abbabb)

Appendix: generalizing solution 5a

Let Σ be a finite alphabet and <⊂ Σ∗ × Σ∗ be a full order. Since Σ is finite, < is well-
founded and it has both minimum amin and maximum amax. Let us define a successor
function f : (Σ− {amax}) → Σ as follows:

f(a) = b ⇔ a < b ∧ ¬∃c : a < c ∧ c < b

Since < is a full order, f(a) is unambiguous.

A Turing machine M that computes the lexicographic successor of the input x is defined

as follows: M = (Q,Σ,Γ, δ, q0, qacc, qrej),

Q = {q0, q1, qacc, qrej}
Γ = Σ
δ = {(q0, amax, q0, amin, R), (q0, <, q1, amin, L)}

∪ {(q0, a, q1, f(a), L) | a ∈ (Σ− {amax})}
∪ {(q1, a, q1, a, L) | a ∈ (Σ ∪ {<})}
∪ {(q1, >, qacc, >, R)}

We see that we can obtain the Turing machine that was presented in the solution 5a
directly from the above definition by setting amin = a, amax = c, f(a) = b, and f(b) = c.

