Spring 2002

T-79.148 Introduction to Theoretical Computer Science Tutorial 9 Solutions to the demonstration problems

4. **Problem:** Prove that the class of context-free languages is not closed under intersections and complements. (*Hint:* Represent the language $\{a^k b^k c^k \mid k \ge 0\}$ as the intersection of two context-free languages.)

Solution: Let $L = \{a^k b^k c^k \mid k \ge 0\}$. This language has been proven context-free (see compendium, p. 72). We can prove that context-free languages are not closed under intersection by finding two context-free languages L_1 and L_2 such that $L = L_1 \cap L_2$. Languages $L_1 = \{a^* b^k c^k \mid k \ge 0\}$ and $L_2 = \{a^k b^k c^* \mid k \ge 0\}$ fulfill this condition.

A direct corollary is that the class of context-free languages cannot be closed under complementation, either, since they are closed under union and $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$.

Finally, we prove that L_1 and L_2 are context-free by presenting context-free grammars that generate them. The language L_1 is generated by $G_1 = (\{S, A, B, a, b, c\}, \{a, b, c\}, P_1, S)$, where $P_1 = \{S \to AB, A \to aA \mid \varepsilon, B \to bBc \mid \varepsilon\}$. Similarly, L_2 is generated by $G_2 = (\{S, A, B, a, b, c\}, \{a, b, c\}, P_2, S), P_2 = \{S \to AB, A \to aAb \mid \varepsilon, B \to cB \mid \varepsilon\}$.

- 5. Problem: Design Turing machines NEXT and DUP that perform the following tasks:
 - (a) NEXT replaces a string given on the machine's tape by its immediate lexicographic successor;
 - (b) DUP duplicates the string given on the tape, thus e.g. replacing the string *abb* by the string *abbabb*.

Solution:

(a) The lexicographic order $<_L$ over a set Σ^* is formed in terms of a total order $<\subset \Sigma \times \Sigma$. Most commonly, < is either numerical or alphabetic order. For example,

If
$$\Sigma = \{a, ..., z\}$$
, then $a < b < c < \dots < z$
If $\Sigma = \{0, 1\}$, then $0 < 1$

The lexicographic order $<_L$ is defined as follows: Let $x, y \in \Sigma^*$, $x = x_1 \cdots x_n$ and $y = y_1 \cdots y_m$. Now, $x <_L y$ if one of the following conditions hold:

- (i) n < m, or
- (ii) n = m and there exists $i \leq n$ such that $x_i < y_i$ and for all $j < i, x_i = y_i$.

For example, the lexicographic order over the words of the alphabet $\{0,1\}$ is defined as follows:

 $\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, \dots$

The solution constructs a Turing machine that works with the alphabet $\{a, b\}$. However, it is easy to generalize the construction to work with any alphabet (details in appendix).

In state q_1 we have used a short-hand notation \geq to denote any symbol other than the tape start symbol >. The machine works by changing all least significant *c*-letters

to *a*-letters while it stays in the state q_0 . As soon as the first letter $\sigma < c$ is found, it is replaced by the alphabetically next letter. Finally, the tape read/write head is returned to the start of the tape. (The reason for this is that it makes combining Turing machines easier).

Consider how NEXT finds the successor for *bacc*:

$$(q_0, \underline{c}cab) \vdash (q_0, \underline{a}\underline{c}ab) \vdash (q_0, \underline{a}\underline{a}\underline{b}) \vdash (q_1, \underline{a}\underline{a}bb) \\ \vdash (q_1, \underline{a}\underline{a}bb) \vdash (q_1, > aabb) \vdash (q_{acc}, \underline{a}abb)$$

The result is *bbaa*.

(b) This solution supposes that $\Sigma = \{a, b\}$. However, it is trivial to extend this to allow also other alphabets.

The basic idea is that we copy one symbol to the end of the tape at a time. We keep track of the position of the currently worked-upon symbol by replacing it by \sqcup . We write the copy of the word initially using capital letters $\{A, B\}$ since otherwise we could not notice when the original word ends and the copy starts. Finally, all upper case letters are replaced by their lower case equivalents and the read/write head returned to the start of the tape.

Consider how DUP works with the input *abb*:

$$\begin{aligned} (q_0,\underline{a}bb) \vdash (q_1, \sqcup \underline{b}b) \vdash^* (q_1, \sqcup bb \leq) \vdash (q_2, \sqcup b\underline{b}A) \vdash^* (q_2, \sqcup bbA) \vdash (q_0, a\underline{b}bA) \\ \vdash (q_3, a \sqcup \underline{b}A) \vdash^* (q_3, a \sqcup bA \leq) \vdash (q_4, a \sqcup b\underline{A}B) \vdash^* (q_0, ab\underline{b}AB) \\ \vdash^* (q_0, abb\underline{A}BB) \vdash (q_5, abba\underline{B}B) \vdash^* (q_5, abbabb \leq) \vdash^* (q_{acc}, \underline{a}bbabb) \end{aligned}$$

Appendix: generalizing solution 5a

Let Σ be a finite alphabet and $\langle \subset \Sigma^* \times \Sigma^*$ be a full order. Since Σ is finite, \langle is well-founded and it has both minimum a_{\min} and maximum a_{\max} . Let us define a successor function $f : (\Sigma - \{a_{\max}\}) \to \Sigma$ as follows:

$$f(a) = b \Leftrightarrow a < b \land \neg \exists c : a < c \land c < b$$

Since < is a full order, f(a) is unambiguous.

A Turing machine M that computes the lexicographic successor of the input x is defined

as follows: $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}}),$

$$Q = \{q_0, q_1, q_{acc}, q_{rej}\}$$

$$\Gamma = \Sigma$$

$$\delta = \{(q_0, a_{max}, q_0, a_{min}, R), (q_0, <, q_1, a_{min}, L)\}$$

$$\cup \{(q_0, a, q_1, f(a), L) \mid a \in (\Sigma - \{a_{max}\})\}$$

$$\cup \{(q_1, a, q_1, a, L) \mid a \in (\Sigma \cup \{<\})\}$$

$$\cup \{(q_1, >, q_{acc}, >, R)\}$$

We see that we can obtain the Turing machine that was presented in the solution 5a directly from the above definition by setting $a_{\min} = a$, $a_{\max} = c$, f(a) = b, and f(b) = c.