Homework problems:

1. Convert the grammar

\[S \rightarrow (S) \mid A \]
\[A \rightarrow SS \mid \varepsilon \]

into Chomsky normal form.

2. Determine, using the CYK algorithm ("dynamic programming method", Lewis & Papadimitriou p. 155), whether the strings \textit{aaaaa} and \textit{aaaaaa} are generated by the grammar

\[S \rightarrow AB \mid BC \]
\[A \rightarrow BA \mid a \]
\[B \rightarrow CC \mid b \]
\[C \rightarrow AB \mid a \]

In the positive case, give also the respective parse tree(s).

3. Design pushdown automata recognising the following languages:

 (a) \{ \textit{www}^R \mid w \in \{a, b\}^* \};

 (b) \{ \textit{ww}^R \mid w \in \{a, b\}^* \}.

Demonstration problems:

4. Given a context-free grammar \(G = (V, \Sigma, P, S) \), a nonterminal \(A \in V - \Sigma \) is redundant, if it cannot appear in the derivation of any sentence generated by \(G \), i.e. if no derivation in \(G \) is of the form \(S \Rightarrow^* \alpha A \beta \Rightarrow^* x \), where \(\alpha, \beta \in \Sigma^* \), \(x \in \Sigma^* \). Design an algorithm for removing all the redundant nonterminals from a grammar. (Hint: Determine first the \textit{non}redundant nonterminals.)

5. Design a pushdown automaton corresponding to the grammar \(G = (V, \Sigma, P, S) \), where

\[V = \{S, (,), *, \cup, \emptyset, a, b\} \]
\[\Sigma = \{(,), *, \cup, \emptyset, a, b\} \]
\[P = \{S \rightarrow (SS), S \rightarrow S^*, S \rightarrow (S \cup S), S \rightarrow \emptyset, S \rightarrow a, S \rightarrow b\} \]

6. Design a grammar corresponding to the pushdown automaton \(M = (Q, \Sigma, \Gamma, \Delta, s, F) \), where

\[Q = \{s, q, f\}, \Sigma = \{a, b\}, \Gamma = \{a, b, c\}, F = \{f\}, \]
\[\Delta = \{(s, e, e), (q, c), ((q, a, c), (q, ac)), ((q, a, a), (q, aa)) \]
\[((q, a, b), (q, c)), ((q, b, c), (q, bc)), ((q, b, b), (q, bb)) \]
\[((q, b, a), (q, c)), ((q, e, c), (f, c)) \} \]