
Tik-79.148 Spring 2001
Introduction to Theoretical Computer Science
Tutorial 5
Answers to Demonstration Exercises

4. The construction works by going through all possible paths from the initial
state to all final states. At start we give each state a unique number and
then use the following two recursive rules:

R(i, j, 1) =

{
{σ ∈ Σ | δ(qi, σ) = qj} i 6= j

{e} ∪ {σ ∈ Σ | δ(qi, σ) = qj} i = j

R(i, j, k + 1) = R(i, j, k) ∪R(i, k, k)R(k, k, k)∗R(k, j, k)

The notation R(i, j, k) denotes the set of computations that lead from the
state qi to qj that do not visit state qk or higher.

The intuition of the first rule is that if we may not visit any state on our
route, we mush take a direct transition from qi to qj .

The second rule asserts that we can divide all routes from qi to qj without
visiting qk+1 or higher into two partitions: we either do not visit qk enroute
or we go to qk, potentially visit it again, and finally go to qj .

We want to find the regular expression corresponding to the following
finite state automaton:

a a
b

b

Using the rules, we get:

L(M) = R(1, 2, 3)
R(1, 2, 3) = R(1, 2, 2) ∪R(1, 2, 2)R(2, 2, 2)∗R(2, 2, 2)
R(1, 2, 2) = R(1, 2, 1) ∪R(1, 1, 1)R(1, 1, 1)∗R(1, 2, 1)
R(2, 2, 2) = R(2, 2, 1) ∪R(2, 1, 1)R(1, 1, 1)∗R(1, 2, 1)

R(1, 2, 1) = R(2, 1, 1) = b

R(1, 1, 1) = R(2, 2, 1) = e ∪ a

Finally, we substitute the simple cases to the earlier equations to get:

R(1, 2, 2) = b ∪ (e ∪ a)(e ∪ a)∗b = a∗b

R(2, 2, 2) = (e ∪ a) ∪ b(e ∪ a)∗b = e ∪ a ∪ ba∗b

R(1, 2, 3) = a∗b ∪ a∗b(e ∪ a ∪ ba∗b)∗(e ∪ a ∪ ba∗b)
= a∗b(a ∪ ba∗b)∗

1

5. The pumping theorem for regular languages states that for each infinite
regular language L we can find some k ≥ 0 such that all strings w in the
language that are longer than that (|w| > k) may be divided into three
parts x, y, and z (y 6= e) such that xynz ∈ L for all n ≥ 0.

The intuition behind the pumping theorem is that there is only a finite
number states in an automaton. If the accepted language is infinite, there
has to be a cycle in the automaton. This cycle may be traversed zero,
one, or an arbitrary number of times. The following picture illustrates
this situation:

x z

y

We have to prove that L = {wwR | w ∈ {a, b}∗} is not regular. We start
by defining the language L′ = L ∩ (ab)∗(ba)∗. Since the class of regular
languages is closed under intersection, L may not be regular if L′ is not
regular.

By examining the words in L we notice that:

L′ = (ab)n(ba)n, n ≥ 0 .

Consider the word w = (ab)k(ba)k where k is an arbitrarily large integer.
If L′ is regular, we can divide w in the three parts x, y, and z. We now
go through every possible choice of y and show that the pumping theorem
cannot be satisfied so L′ has to be irregular.

1◦ y = (ab)r or y = (ba)r, r > 0. Since all words in L′ have an equal
number of ab and ba parts, the words resulting from adding y don’t
belong to L′ anymore.

2◦ y = bb, y = a(ba)r tai (ba)rb, r ≥ 0. Since all words in L′ have an
equal number of a and b letters, these choices are not possible.

3◦ y = a(ba)rbb(ab)rb is not possible since in this case the resulting
words will have a substring ba before the last ab.

Since no satisfying partition could be found, L′ is not regular so L must
also be irregular.

6. We can use the pumping theorem to prove that a language is not regular
but not the other way. There are languages that fullfill the conditions
of the theorem but that are not regular. For example, the language of
balanced parenthesis (for example, (()()) and (((()))) belong to it) is not
regular but the condition is satisfied since we may add the string () an
arbitrary number of times to all words of the language.

The easiest way to prove that a language is regular is to use the closure
properties of regular languages; the class of regular languages is closed
under the union, concatenation, Kleene star, complementation, and the
intersection.

2

In the language we are given a regular language L and we define a new
language by it:

L′ = {xy | x ∈ L ja y /∈ L}

The language L′ is the concatenation of languages L and its complement
L (y /∈ L → y ∈ L). Since regular languages are closed under complemen-
tation and concatenation, L′ is regular.

We may also construct a finite-state automaton that decides the language
L′. Since L is regular, there is some deterministic automaton M that
decides it. We now construct an automaton M that is otherwise similar to
M except that all accepting states are made rejecting and vice verse. Now
M accepts the complement of L. We combine these two machines into
a new non-deterministic automaton M ′ by adding a non-deterministic e-
transition from all accepting states of M to the initial state of M . Now
M ′ decides L′ so L′ is regular.

3

