Tik-79.148 Spring 2001
Introduction to Theoretical Computer Science

Tutorial 4

Solutions to Demonstration Exercises

A deterministic finite automaton (DFA) is a tuple M = (K, %, 4, s, F'), where K
is a finite set of states, ¥ is the alphabet, § a transition function K x ¥ — K,
s € K is the initial state and F C K is set of accepting states.

Each state machine corresponds to a regular language. The state machine starts
from the initial state and goes through the input, letter by letter, always making
a transition to a new state according to J. If the state machine is in an accepting
state, when the end of the input has been reached, the word belongs to the
language (the automaton accepts the language), otherwise it does not belong to
the language (the automaton rejects the word).

A nondeterministic finite automaton (NFA) M = (K, X, A, s, F') differs from the
deterministic one in its transition relation. In a nondeterministic automaton
the relation A C K x ¥ U {e} x K allows many transitions for one input,
and furthermore empty transitions (e-transitions), where the automaton can
spontaneously move to a new state without consuming input, are also allowed.
A nondeterministic automaton accepts a word, if there is some route from the
initial state to an accepting state.

In applications it is not possible to guess the correct route to an accepting
state. Thus, in practice one must go through all possible routes systematically.
Nondeterministic automata are still used because there are efficient algorithms
for creating a NFA from a regular expression. If execution speed is critical
the nondeterministic automaton can always be converted to a corresponding
deterministic automaton.



O

5. Let M = (K,%,A,S,F), where S C K is the set of initial states. For a
NFA like this, a corresponding ordinary nondeterministic machine can be
constructed:

M =(KU{s},%,A" 8, F),s ¢ K, where
A'=AU{(s,e,s)|se S}

The idea of the construction is that M’ is otherwise the same automaton
as M, but one state has been added. This new state is set to be the initial
state, and e-transitions to all initial states of M are added. Now M’ is
an automaton with one initial state, and both machines clearly accept
the same language, i.e. L(M) = L(M"). The suggested extension does not
increase the expressiveness of NFA:s.

M’
e >O—>\eo\b~&e
b
6. The claim:
(¢,2y) Fir (pyy) if and only if (¢,z) Fi (p,e)

By definition (¢, w) Fas (¢',w’) if and only if there exists u € X U{e} such
that w = ww’ and (q,u,q’) € A. In other words, from the configuration
(¢, w), the configuration (¢’,w’) is reachable in one step only if w = w’
and there is an empty transition from g to ¢’ or w’ is the suffix of w, and



from the state g there is transition to ¢’ with the first symbol of w. The
notation 3}, denotes the reflexive and transitive closure of j;.
If (q,zy) F3; (p,y), then by definition there exists a sequence of configu-

rations (¢, xy) Far (g1, w1y),Far (g2, w2y) Far -+ Far (Gn, wny) Far (0, 9),
where

Wog =T
uwiy1,u € ZU{e} .

Wy

Because on each step the new state is defined by the first symbol in the
input, the other symbols of the string do not affect the transition. Furt-
hermore, as the length of the input cannot grow at any point, it is not
possible to peek at some symbol of the string y, and write them back at
the tape. Therefore, during the execution above the string y is not used
in any transition and all transitions are chosen on basis of the letters x.

Because only x affects the execution of the automaton, exactly the same
transitions could be performed if y where replaced with the empty string
e. So

(¢;xy) Fay (p,y) = (¢, @) Far (pse)
The proof in the other direction can be done using the same arguments.

. The states of the joint state machine are all possible pairs, which can be
constructed from the states of the component machines. E.g., if K; =
{q1,92,q3} and Ky = {p1,p2}, then the states of the joint machine are

K ={(q1,p1), (¢2,p1), (g3, 1), (q1,p2), (¢2,p2), (43, p2)} -

Conceptually the transitions of the machines are split into two classes,
internal and external. A transition is internal if the label does not belong
to the alphabet of the other machine. In the exercise the only internal
transition of Mj is g3 nh qo. M> has four internal transitions, those with
the label ints. If the label of a transition appears in the alphabet of both
machines the transition is external.

The rules for forming the joint transition relation essentially say that the
state machines synchronize on external transitions. A state machine can
always perform an internal transition, but an external transition can per-
formed only if both machines perform the same transition at the same
time.

The states of component state machines are:

K1 ={q, 01,42, 9}
K3 = {po, p1,p2, 03,4, D5, D6, P7}

The joint state machine contains 4 x 8 = 32 states. Many of these states
can never be reached, so the state space shrinks to:

K ={(q0,p0), (q1,p1) (q1,p2), (q1,P4), (a2, 13), (43, P7), (90, P7) (43, P0) }

The transitions of the joint machine are shown in the picture below.



(a1, p2)
int2

scmd (40, p7)

>(qO, p0)

(g1, p1)

ransl rans2

(g1, p4)

(g2, p3) ——— (a3, p7)

We can see from the picture that there is no arc forward from the state
(g1, p2). This state can be reached from the initial state with the sequence

int

d
(90,0) "= (q1,01) ™= (q1,p2)

so the system contains a reachable deadlock.

There are no final states defined for the machines in this exercise because
usually when protocols are analyzed we are not interested simple execu-
tions but we consider infinite sequences of messages. Ordinary state mac-
hines only allow finite input (albeit as long as we want), and to recognize
infinite words stronger classes of automata are used, usually Biichi auto-
mata. They, however, are not a topic of this course.



