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The regular expressions are defined inductively:

• ∅ and all a ∈ Σ are regular expressions.

• If α and β are regular expressions, then also (αβ), (α ∪ β) and α∗ are
regular expressions.

• There are no other regular expressions.

For the regular expression ∅∗ the shorthand e is used. Usually the extra parent-
hesis are left out: ((a(bc)) ∪ (cd∗)) = abc ∪ cd∗.

A regular expression α defines a language L(α), which is a subset of Σ∗. For
instance:

L(ab ∪ ac∗d) = {ab, ad, acd, accd, accd, acccd, accccd, . . . } .

If there is no danger for confusion1, we don’t use L() around the regular expres-
sion, and the expression itself is used to mean the set of strings (words), which
belong to the language it describes.

The regular expressions are perhaps best thought of as patterns. A string is part
of the language if it fits the pattern given by the expression:

• ab ⇒ we first taken an a, then a b

• a ∪ b ⇒ we either take an a or a b

• a∗ ⇒ we take as many a:s as we want (also 0).

The book does properly make clear the distinction between ∅ and ∅∗. It goes
on to use e to signify the latter, without defining it more accurately. According
to the definition L(∅) = ∅, i.e. the empty language, which does not contain any
word. Correspondingly L(∅∗) = L(∅)∗, i.e. a language which is constructed in
the following way:

L(∅)∗ = {w | w = w1 ◦ w2 ◦ · · · ◦ w3, for some k ≥ 0 ja w1, . . . , wk ∈ ∅}

Because no string belongs to the empty set, the only possible value for k is zero.
Because by the definition, the concatenation of zero characters is the empty
string e, the language becomes

L(∅∗) = {e}
1And, unfortunately, many times when there is danger for confusion, as in exercise 4. part

b and c.
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In other words, the regular expression ∅ refers to a language which contains
no strings, and the expression ∅∗ refers to a language, which only contains the
empty string e.

The union of regular expressions can be denoted in many ways. The most com-
mon are ∪, + and |. In most practical implementations additional operators are
defined, to simplify the expressions. The expressiveness of the expressions (the
different languages they can describe) usually stays the same.

Regular expressions are used for the syntactic analysis in compilers for program-
ming languages and finding text of certain form from a text file (grep) among
other things.

4 a) The statement baa ∈ a∗b∗a∗b∗ is true, because by choosing one of the
first b-letters and two of the second a-letters we get the string baa.

b) The statement b∗a∗ ∩ a∗b∗ = a∗ ∪ b∗ is true, because

b∗a∗ ∩ a∗b∗ =

{e, b+, a+, b+a+} ∩ {e, a+, b+, a+b+} =

{e, a+, b+} = a∗ ∪ b∗

Here a+ = aa∗

Note that the expression on the left hand side of the equation is not
a regular expression, because intersection cannot appear in a regular
expression. Here we refer to the intersection of two regular languages.

c) The statement a∗b∗ ∩ c∗d∗ = ∅ is false, because

a∗b∗ ∪ c∗d∗ =

{e, b+, a+, b+a+} ∩ {e, c+, d+, c+d+} =
{e} 6= ∅

d) The statement abcd ∈ (a(cd)∗b)∗ is also false, because all strings
accepted by the regular expression (except for the empty string) end
in the letter b.

5 We show that a(b∪c) = ab∪ac. By definition the expression b∪c describes
the set {b, c}. From the definition of concatenation it follows that a(b∪ c)
is the set {a} ◦ {b, c} = {ab, ac}.

6 Claim: If a language L is regular, then also the language

L′ = {w | uw ∈ L for some string u}

is regular.

L′ contains all the strings which appear as the suffixes of the string in L.
For instance: if

L = {a, aba, abb}, then
L′ = {e, a, b, ba, bb, aba, abb}
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Here we construct a systematic way to construct a regular expression
R′, which defines the language L′, given the regular expression R, which
defines L.

Formally, we denote by S the set of all regular expressions. Now, we wish
to find a function f : S → S, such that f(R) = R′.

We define f recursively:

i) (base case) f(∅) = ∅ and f(a) = a∪ e, a ∈ Σ∪ {e}. In other words, if
a regular expression R is empty it has not suffix, and if it is only a
letter from the alphabet or e, R′ is the union of e and the respective
letter.

ii) f(α ∪ β) = f(α) ∪ f(β), α, β ∈ S. In other words, if R is the union
of two regular expressions α and β, the suffixes of the strings the
expression defines can have anything either of the subexpressions
can have.

iii) f(α∗) = f(α)α∗, i.e at the end of the word, the subexpression under
the influence of the Kleene star can appear wholly any number of
times, and before it something in which the subexpression can end
in.

iv) f(αβ) = f(α)β ∪ f(β), i.e. at the end of word formed by concatena-
tion, there can be either something from the end of the latter part,
or the latter part appear wholly and before it is a string in which the
first part can end.

After this, only a formal proof of correctness of the rules above is needed.
This will not be given here but it can done by showing the correctness of
each rule using induction.

Example: Let R = ba(aa ∪ bab)∗. Now

f(R) = f(ba(aa ∪ bab)∗)
= f(ba)(aa ∪ bab)∗ ∪ f((aa ∪ bab)∗)
= (f(b)a ∪ f(a))(aa ∪ bab)∗ ∪ f(aa ∪ bab)(aa ∪ bab)∗

= ((e ∪ b)a ∪ (e ∪ a))(aa ∪ bab)∗ ∪ (f(aa) ∪ f(bab))(aa ∪ bab)∗

= (e ∪ a ∪ ba)(aa ∪ bab)∗ ∪ ((f(a)a ∪ f(a)) ∪ (f(b)ab ∪ f(a)b ∪ f(b)))(aa ∪ bab)∗

= (e ∪ a ∪ ba)(aa ∪ bab)∗ ∪ (e ∪ a ∪ aa ∪ b ∪ ab ∪ bab)(aa ∪ bab)∗

= (e ∪ a ∪ aa ∪ b ∪ ab ∪ bab ∪ ba)(aa ∪ bab)∗

= (e ∪ a ∪ b ∪ ab ∪ ba)(aa ∪ bab)∗
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