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4. 1◦ The basic case: consider the smallest non-empty set S1 = {a1}. Its
only partial order R1 = {(a1, a1)}. (A partial order is a reflexive,
anti-symmetric, and transitive binary relation.)
An element a ∈ S is a minimum whenever it doesn’t occur as the
second element of a pair in the relation (except that the reflexive
self-loop is allowed). Formally, a is a minimum iff:

∀a, b ∈ S : (b, a) ∈ R ⇒ a = b,

The element a1 fulfills this condition in R1 so it is a minimum.

2◦ Induction hypothesis: Suppose that there exists a natural number n
such that all partial orders on a set S have a minimum always when
|S| < n.

3◦ Induction step: Let Sn = {a1, . . . , an} be a set with n elements and
Rn be an arbitrary partial order on Sn. Choose now an arbitrary
element ai ∈ Sn, remove it from Sn as well as all pairs that refer to
it from Rn:

S′
n = Sn − {ai}

R′
n = {(a, b) ∈ Rn | a 6= ai ∧ b 6= ai}

Now R′
n is a partial order (prove this to yourself formally, it follows

from transitivity of Rn). Since |S′
n| = n− 1 < n, by induction hypot-

hesis R′
n has at least one minimum that we now denote by amin.

Consider again Rn. Now there are two possibilities:

i) If (ai, amin) /∈ Rn, is amin also a minimum of Rn.
ii) If (ai, amin) ∈ Rn, then amin can’t be a minimum. However, since

amin is the minimum of the partial order R′
n and a partial order

is always transitive, there may not be a pair (b, ai), b 6= ai in
the relation. Thus, ai is a minimum of Rn and the induction is
complete.

5. Suppose that there are n persons in the party. We try to give every one a
different number of acquitances.

Person Acquitances
1 0
2 1
3 2
...

...
n n− 1

We notice that the last person knows everybo-

dy but the first person doesn’t know anybody. These two cases are in
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conflict, so only n− 1 different numbers are possible. Now by the pigeon-
hole principle we know that it is not possible to allocate n persons into
n− 1 slots without having at least two persons in at least one slot so it is
not possible for all persons to have a different number of acquitances.

6. We can define the concatenation v ◦ w of strings v and w (v, w ∈ Σ∗) as
follows:

1◦ If |v| = 0, then v ◦ w = w.

2◦ If |v| = n + 1 > 0, we can write v in a form v = ua, u ∈ Σ∗, a ∈ Σ.
Now we define v ◦ w = u ◦ aw.

For example, Σ = {a, b}, v = aba, w = bba:

v ◦ w = aba ◦ bba

= ab ◦ abba

= a ◦ babba

= e ◦ ababba = ababba

7. We have to prove that if we reverse a string twice, we get the original
string. The simplest way to do it is by induction. To simplify the proof we
will use the identity (wx)R = xRwR that is proved in the textbook.

1◦ The basic case: |w| = 0, (eR)R = e (by definition eR = e).

2◦ Induction hypothesis: Supposte that the claim holds for all |w| ≤
n, n > 0.

3◦ Induction step: Let |w| = n + 1. Now w can be written as w = ua,
a ∈ Σ, u ∈ Σ∗, |u| = n.

(wR)R = ((ua)R)R

= (auR)R

= (uR)R(a)R by the auxiliary identity

= (uR)R(ea)R

= (uR)R(aeR)

= (uR)Ra

= ua = w by induction hypothesis

8. A formal alphabet is a finite set of symbols. For example, the common
alphabet {a, b, . . . , z} and the binary alphabet {0, 1} are both also formal
alphabets. Most often we use letters and numbers in alphabets, but we
may also use any other symbols if necessary.

The notation Σ∗ denotes all strings that can be formed using the symbols
in Σ including the empty string e. For example, if Σ = {a, b}, then Σ∗ =
{e, a, b, aa, ab, ba, bb, . . . }. If Σ is not empty, Σ∗ is necessarily infinite.

A formal language L is some subset L ⊆ Σ∗. The most common notation
in use is L = {w ∈ Σ∗ | w fulfills the property P}. That is, w is in the
language if it satisfies some property P .
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a) The set L = {w | for some u ∈ ΣΣ, w = uuRu} contains all six letter
long words where the first two letters are equal to the last two letters
and the middle part contains the same string reversed. The notation
u ∈ ΣΣ denotes all two-letter words.
For example, the words abbaab (u = ab) and aaaaaa (u = aa) belong
to L. On the other hand, w = abbbba /∈ L. Since there are only a
finite number of two-letter words, L too is finite.

b) The language L = {w | ww = www} contains only the empty word
e. By the condition 2|w| = 3|w| that is only possible when |w| = 0
and w = e.

c) The language L = {w | for some u, v ∈ Σ∗, uvw = wvu} contains
all words (L = Σ∗). We see that if we choose u = v = e, then
e ◦ e ◦ w = w = w ◦ e ◦ e and the condition is fulfilled.

d) The language L = {w | for some u ∈ Σ∗, www = uu} contains for
example aa (u = aaa) and aaaa (u = aaaaaa). The condition is that
w is either all a or all b and 3 · |w| has to be divisible by two. The
string ab does not belong to the language.

3


