
Tik-79.148 Spring 2001
Introduction to Theoretical Computer Science
Tutorial 11
Answers to Demonstration Exercises

1. Primitive recursive functions are formed from three initial functions using
two combinating rules.

The initial functions are:

(a) The zero functions zerok(n1, . . . , nk) = 0 for all k, n1, . . . , nk ∈ N.
(b) Identity function idk,j(n1, . . . , nk) = nj , for all k ≥ j > 0, n1, . . . ,

nk ∈ N.
(c) The successor function succ(n) = n + 1 for all n ∈ N.

The initial functions zero and succ can be used to define natural numbers:

zero() = 0
succ(zero()) = 1

succ(succ(zero())) = 2
...

succ(n) = n + 1

We can combine initial functions using composition and primitive recur-
sion:

(a) Let k, l ≥ 0, g k-ary functions (g : Nk → N), and h1, . . . , hk a set of
l-ary functions. Now the composition of g with h1, . . . , hk is the l-ary
function:

f(n1, . . . , nl) = g(h1(n1, . . . , nl), . . . , hk(n1, . . . , nl))

In composition the value returned by of one function is given as an
argument to another function. It is not necessary to use different
hi functions. For example, the function f(n, m) = n2 + m2 can be
written as the composition of plus and times:

f(n, m) = plus(times(n, n), times(m,m))

Here l = k = 2, g = plus and h1 = h2 = times.
(b) For all k ≥ 0, let g be a k-ary function and h a k + 2-ary function.

The k + 1-ary function f is obtained by primitive recursion if:

f(n1, . . . , nk, 0) = g(n1, . . . , nk)
f(n1, . . . , nk,m + 1) = h(n1, . . . , nk,m, f(n1, . . . , nk,m))

for all n1, . . . , nk,m ∈ N.
In primitive recursion we have a simple basic case (m = 0) as well as a
set of recursion equations that are used to transform more complica-
ted cases to the basic case.

1

The set of primitive recursive functions contains all initial functions as
well as all functions that can be formed from them using composition and
primitive recursion.

In the exercise we have to prove that the function

f(n) = ”n + 1th odd number”

is primitive recursive. There are several ways to define it, here is one of
them:

f(0) = 1
f(m + 1) = f(m) + 2

Since the numbers 1 and 2 are not initial functions, we replace them using
compositions of the succ function:

f(0) = succ(zero())
f(m + 1) = succ(succ(f(m)))

Here k = 0, g = succ(zero()) and h = succ(succ(f(m))).

2. By adding a new operation, minimization we can construct a larger class
of functions. A minimization statement is of the form:

µz.[P (z)] ,

where z is a variable and P (z) is some predicate (that is, a function that
has two possible values: true (1) and false (0)) whose valua is a function
of z. The value of a minimization is the least z for which P (z) is true.

Formally: Let g be a k+1-ary function, k ≥ 0. Then the k-ary minimization
function f of g is defined as follows:

f(n1, . . . , nk) =

{
the least m that satisfies g(n1, . . . , nk,m) = 1 , if m exists
0 , otherwise

A predicate g is regular if g(n1, . . . , nk,m) = 1 for some m ≥ 0. It is not
possible to know in the general case whether g is regular. The underlying
problem is the same as in the Turing machine halting problem. A func-
tion is µ-recursive (or simply recursive) if if can be obtained from the
initial functions using composition, primitive recursion, and minimization
of regular predicates.

In addition to regular minimization we may also use bounded minimization
of the form:

µz≤x.[P (z)] ,

where x is the upper bound for the value of z. If no z ≤ x satisfies the
predicate, the result of bounded minimization is 0. The value of boun-
ded minimization can always be computed since x gives the upper bound
for the number of computation steps. The bounded minimization can be
implemented using primitive recursion so the class of primitive recursive
functions is closed with respect to it.

Intuitively, a bounded minimization corresponds to the following program
snippet:

2

for i := 1 to n do

The key point is that there is an upper bound for the loop counter.

An unbounded minimization corresponds to the snippet:

while not end do

Here we do not know on advance when if ever the predicate ‘end’ is satis-
fied.

We can compute the remainder of two integers using the following µ-
recursive function:

mod (x, y) =

{
0 , x = 0 ∨ y = 0
µz≤x. [µw≤x. [y · w + z = x]] , otherwise.

Since both above minimizations are bounded, the function is actually even
primitive recursive.

The function corresponds to the following C-language program:

int modulo(int x, int y)
{

int z, w;
if (x == 0 || y == 0)

return 0;

for (z = 0; z <= x; z++) {
for (w = 0; w <= x; w++) {

if (w*y + z == x)
return z;

}
}

}

3. Since recursive functions are from numbers to numbers, we can’t use them
to directly handle functions on strings. However, we can use a systema-
tic way to encode the strings into numbers. This process is called Gödel
numbering. There are many different ways to define Gödel numbers. The
one we use here transforms strings over a n-letter alphabet into n+1 base
integers that are further transformed into decimal numbers.

In the exercise we have the following alphabet: ∆ = {a, b, c} and we impose
an order on the individual letters: järjestykseen

d1 = a

d2 = b

d3 = c

The number base will be β = |∆|+ 1 = 4.

3

A string w = di1di2 . . . dik
is transformed into a number using the usual

method for changing the base:

gn(w) = βk−1 · i1 + βk−2 · i2 + · · ·+ β1 · ik1 + ik

In addition we use the symbol d0 to represent the empty string e. It is
added because otherwise there would be numbers (for example, β) that
don’t correspond to any strings. However, we now have a problem that by
adding the empty string we may change the Gödel number of a string. In
this case the canonical number is one without any empty strings at all.

(a) The Gödel number of abc is obtained as follows:

gn(abc) = 1 · 42 + 2 · 41 + 3 · 40

= 27

(b) The Gödel number 19 corresponds to a string:

19 = 1 · 42 + 0 · 41 + 3 · 40

gn−1(19) = d1d0d3 = aec = ac

4. A problem is in the complexity class NP if it can be solved using a
non-deterministic Turing machine in polynomial time with respect to the
length of the input. In practice this means that if we can verify the answer
in polynomial time using a deterministic Turing machine, then it is in NP.

A problem is NP-complete if all NP problems can be reduced to it in a
polynomial time. Here the intuition is to show that a problem A is at
least as difficult as the problem B by transforming an instance of A into
an instance of B.

We usually prove that a problem is NP-complete in two phases:

(a) Show that the problem is in NP.

(b) Reduce some known NP problem into it.

The kernel of a graph G = (V,E) is a K ⊆ V such that:

(a) There are no edges between nodes in K.

(b) All nodes not in the kernel can be reached in one step from some
node in kernel.

The problem of finding a kernel is clearly in NP since we can solve it with
a non-deterministic Turing machine in the following fashion:

(a) Guess a set K of nodes. We need O(|K|) steps for this.

(b) Iterate over all edges (a, b) leaving from nodes in K. If the edge goes
into another node in K, we reject the answer. Otherwise we put a
mark on b. This phase takes O(|E|) steps.

(c) Finally we check that all nodes not in the kernel are marked and
reject the answer if some one is not. This takes O(|V |) steps.

4

Next we have to reduce some NP-complete problem to the kernel problem.
One of the most fundamental NP-complete problems is the so called 3-
sat-problem where we are given a set of propositional clauses that each
have exactly three literals and we want to find a way to assign truth values
to the propositional atoms so that each clause has at least one true literal.

For example, the clause set

{{x1,¬x2, x3}, {¬x1,¬x2,¬x3}}

is satisfiable since choosing x1 and x2 to be true and x3 to be false, each
clause has at least one true literal. The atom x1 satisfied the first clause
and the literal ¬x3 satisfies the second. A truth assigment is also called a
valuation and it may be denoted by several different ways. For example,
the above valuation would be V = {x1, x2,¬x3}, or V(x1) = V(x2) = T ,
V(x3) = F .

The 3-sat-to-kernel reduction goes as follows:

Suppose that a 3-sat instance has the variables x1, . . . , xn and the clauses
C = {C1, . . . , Cm} Construct a graph G = (V,E) such that for each clause
Ci there will be a single node ci and for each variable xi there are two
nodes, xi and ¬xi. The adjacency relation is defined as follows:

(a) For all xi, there are (xi,¬xi), (¬xi, xi) ∈ E.

(b) For all xi ∈ Cj , (xi, cj) ∈ E.

(c) For all ¬xi ∈ Cj , (¬xi, cj) ∈ E.

(d) For all ci, (ci, ci) ∈ E.

For example, the graph corresponding to the above set of clauses is:

x1 ¬x1 x2 ¬x2 x3 ¬x3

c1 c1

Now a node xi is in a kernel if and only if the variable xi is true in a
valuation that satisfies the clauses. Similarily, ¬xi is in a kernel if xi is
false in the valuation. Both xi and ¬xi may not be in a kernel since there
are always arcs between them. On the other hand, since all nodes ci have
a self-loop, either xi or ¬xi has to be in the kernel.

The above graph has a kernel K = {x1, x2,¬x3} that corresponds to the
valuation x1 = T , x2 = T , x3 = F .

Finally, we construct a formal proof that the reduction works. If the graph
G has a kernel K, we may construct a satisfying valuation as follows:
V(xi) = T , iff xi ∈ K, otherwise V(xi) = F . Since K is a kernel, then by
construction of G there is at least some node x ∈ K such that (x, ci) ∈ E

5

for each ci. Again, by construction x ∈ Ci so the clause Ci is satisfied.
This holds for all clauses so V satisfies C.

If C is satisfiable, there exists at least one V that satisfies it. Construct K
by having xi ∈ K whenever V(xi) = T and ¬xi ∈ K whenever V(xi) = F .
Since all clauses are satisfied, there exists at least one true literal x for
each clause Ci. By construction of G, there is an edge between x and ci,
so all nodes ci are covered by K. Similarily, the complement of x is also
covered. As a valuation assigns a unique value for each propositional atom,
there may not be two nodes with a connecting edge in K. Thus, K is a
kernel.

6

