
Tik-79.148 Spring 2001
Introduction to Theoretical Computer Science
Tutorial 10
Solutions to demonstration exercises

4. A grammar (or unrestricted grammar) is a quadruple G = (V,Σ, R, S),
where V , Σ and S are defined in the same way as with context free gram-
mars. The rules of a grammar are of the form

R ⊆ V ∗(V − Σ)V ∗ × V ∗

There may be any string in the left side of a rule, as long as it contains at
least one nonterminal symbol.

A solution grammar G for the exercise:

Σ = {a}
V = Σ ∪ {S, [,], F, N,A}
R = {S → [N], N → FNA, N → e

FA → AaF, Fa → aF, F] →],
[A → [, [a] → a[, [] → e}

The idea of the solution is to first derive n copies of F -nonterminals in the
beginning of the word, and n copies of A-nonterminals in the end of the
word. After that the F -symbols will be brought to the end of the word so
that every time an A-symbol is passed, a terminal symbol a is added to
the word. Since the word initially contains n copies of both the F - and
A-symbols, eventually there will be n · n = n2 copies of a in the word.
Finally, the symbol [will be moved to the end of the word and all the
A-nonterminals are removed from the word at the same time.

For example, the word a32
can be derived as follows:

S → [N] → [FNA] → [FFNAA] → [FFFNAAA] → [FFFAAA]
→ [FFAaFAA] → [FFAaAaFA] → [FFAaAaAaF] → [FFAaAaAa]
→ [FAaFaAaAa] → [FAaaFAaAa] → [FAaaAaFaAa] → [FAaaAaaFAa]
→ [FAaaAaaAaFa] → [FAaaAaaAaaF] → [FAaaAaaAaa]
→ [AaFaaAaaAaa] → [AaaFaAaaAaa] → [AaaaFAaaAaa]
→ [AaaaAaFaaAaa] → [AaaaAaaFaAaa] → [AaaaAaaaFAaa]
→ [AaaaAaaaAaFaa] → [AaaaAaaaAaaFa] → [AaaaAaaaAaaaF]
→ [AaaaAaaaAaaa] → [aaaAaaaAaaa] → a[aaAaaaAaaa] → aa[aAaaaAaaa]
→ aaa[AaaaAaaa] → aaa[aaaAaaa] → aaaa[aaAaaa] → aaaaa[aAaaa]
→ aaaaaaa[Aaaa] → aaaaaa[aaa] → aaaaaaa[aa] → aaaaaaaa[a]
→ aaaaaaaaa[] → aaaaaaaaa

5. If we want to prove that a problem is undecidable, we can either

(i) suppose that the problem is decidable, and derive a contradiction
with a chosen formalism, or

1

(ii) if we already know some other language is undecidable, we can try to
reduce our own problem to the know one. Here we also have two op-
tions. First one is: we prove that if we could decide our own problem,
we could use our solution to decide the undecidable problem. The
other way is: we prove that in order to solve our own problem we
should be able to solve the undecidable problem.

In this solution we use the latter way. The idea of the prove is to show:
if we want to decide the problem ”will an arbitrary Turing machine M
halt on empty input”, we first have to be able to decide the problem
”will an arbitrary Turing machine M halt on input x”. The latter is the
general halting problem for Turing machines, which has been proved to
be undecidable in the text book.

If the problem is decidable, there exists a Turing machine that decides the
language

L = {M | M halts on inpute} .

In other words, there exists a Turing machine that can have encoding
of any Turing machine as input, and decides whether the given machine
would halt on empty input or not. To prove the original claim about the
undecidability of the language it is enough to find one Turing machine,
whose halting cannot be decided.

We construct a Turing machine M , which works in the following way: after
having empty string as its input the machine first writes an arbitrary string
x on the tape (the string can be chosen nondeterministically). After that
the machine starts simulating an arbitrary Turing machine M ′, so that
it does exactly the same transitions as the machine M ′ would do on the
input x.

Now the machine M halts on the input e exactly when the machine M ′

halts on the input x. Because the latter problem is not decidable, there
cannot exist any algorithm to solve whether M halts on input e. Hence,
the problem is undecidable.

6. Let L1 and L2 be two given Turing acceptable languages. According to
the definition, there exists two Turing machines M1 and M2 that accept
(semidecide) these languages. (That is, L(M1) = L1 and L(M2) = L2).
With the help of these machines, we construct 2-tape Turing machines
M∩ and M∪ that accept the intersection and the union of the languages.

(a) Intersection:
In the beginning of the computation M∩ copies the input to the
second tape. After that M∩ simulates the machine M1 on input w
using the first tape. If M1 halts, we know that w ∈ L1. Now we
can simulate the machine M2 on input w using the second tape. If
also M2 halts, the word belongs to both of the languages, and M∩
accepts the word. If w does not belong to either of the languages, the
machine accepting that language will loop forever, and M∩ will not
halt. Thus, M∩ accepts the language L1 ∩ L2.

2

(b) Union:
The machine M∪ that accepts the union of the languages is construc-
ted in the same way. However, here one must pay attention to the
fact that the machines M1 and M2 cannot be simulated one after ot-
her. This is because if M1 loops forever (w /∈ L1), the machine M∪
can never check whether w ∈ L2.
The solution is to simulate the machines M1 and M2 parallel, one
step at time. First the first step of computation of M1 is performed,
then the first step of M2, then the second step of M1, and so on. If
the word belongs to either of the languages, either M1 or M2 will
eventually halt and M∪ accepts the input.

3

