4. We are given two sets, A and B, as well as a function $f : A \rightarrow B$. We then define a relation $R \subseteq A \times A$ (a relation between elements of A) with the help of B and f. A pair (a, b) is in R exactly when f maps both of them to the same element of B, that is, when $f(a) = f(b)$.

For example, consider the case where:

\[
\begin{align*}
A &= \{a, b, c, d, e\} \\
B &= \{1, 2, 3\} \\
f &= \{(a, 1), (b, 2), (c, 1), (d, 2), (e, 3)\}
\end{align*}
\]

Since both $f(a) = 1$ and $f(c) = 1$, the pairs (a, c) and (c, a) are both in R. Also, $f(b) = 2 = f(d)$ so $(b, d) \in R$ and $(d, b) \in R$. Since $f(x) = f(x)$ for all elements $x \in A$, the reflexive pairs (a, a), (b, b), (c, c), (d, d), and (e, e) are all in R. The following picture shows R as a graph:

The aim of the exercise is to show that no matter how we choose the sets A and B and the function f, the relation $R = \{(a, b) \mid f(a) = f(b)\}$ is always an equivalence relation. A relation is an equivalence when it is symmetric, transitive, and reflexive. Now we check whether the properties hold for R.

i) A relation $R \subseteq A \times A$ is **symmetric**, if $(b, a) \in R$ always when $(a, b) \in R$. Since $f(a) = f(b) \iff f(b) = f(a)$, the pair (b, a) is always in R whenever (a, b) is in it, so R is symmetric.

ii) A relation $R \subseteq A \times A$ is **reflexive**, if for all $a \in A$ holds that $(a, a) \in R$. Because $f(a) = f(a)$, the property holds.

iii) A relation $R \subseteq A \times A$ is **transitive** if always when $(a, b) \in R$ and $(b, c) \in R$ it holds that $(a, c) \in R$. Intuitively, a relation is transitive if two elements that are connected by some path along the arcs of the relation, are also connected by a direct arc. If we have:

$$f(a) = f(b) \land f(b) = f(c),$$

1
then also

\[f(a) = f(b) = f(c) \Rightarrow f(a) = f(c), \]

so the relation is transitive.

Because all three properties hold, \(R \) is an equivalence relation.

5. A relation is a partial order if it is reflexive, transitive, and it doesn’t have non-trivial loops (that is, \((a, b) \in R \) and \((b, a) \in R \) implies that \(a = b \)). We now prove that the relation \(R_S = \{(A, B) \mid A, B \in S \text{ for all } A \subseteq B \} \) fulfills all three conditions:

 i) Since \(A \subseteq A \), for all \(A \in S : (A, A) \in R_S \) so \(R_S \) is reflexive.

 ii) Because \(A \subseteq B, B \subseteq C \Rightarrow A \subseteq C \), the relation is also transitive.

 iii) The relation may have a loop only if \(A \subseteq B \) and \(B \subseteq A \). Then by definition \(A = B \), and the loop is trivial.

6. A set \(A \) is closed with respect to some function\(^1\), \(f(a_1, \ldots, a_n) \) if \(f(a_1, \ldots, a_n) \in A \) always when \(a_1, \ldots, a_n \in A \). In other words, if the arguments of the function belong to \(A \), the result also belongs to it. For example, the set \(\mathbb{N} \) of natural numbers is closed with respect to addition but not with respect to subtraction, since \(a - b \) may be negative.

A relation \(B \) is the closure of \(R \) with respect to a property \(P \) if \(R \subseteq B \) and \(B \) is the smallest relation that is closed with respect to \(P \). (Two relations may be compared because they are essentially sets of ordered pairs).

Consider the relation \(R \subseteq A \times A \) where \(A = \{a, b, c, d\} \) and \(R = \{(a, b), (c, a)\} \). A relation is symmetric if \((b, a) \in R \) always when \((a, b) \in R \), so the property that corresponds to symmetry is the function \(f_s : A \times A \rightarrow A \times A \) that reverses all pairs of the relation:

\[f_s((x, y)) = (y, x). \]

Now we can see that \(R \) is not symmetrically closed since, for example, \((a, b) \in R \) but \(f((a, b)) = (b, a) \notin R \). We get the symmetric closure \(R_s \) of \(R \) by adding the reverse of all pairs that lack it:

\[R_s = \{(a, b), (b, a), (c, a), (a, c)\}. \]

To construct the transitive closure \(R_{st} \) we have to add the pair \((x, z)\) whenever there are pairs \((x, y), (y, z) \in R_s \). In particular, because \(R_s \) is symmetric, we know that for all arcs \((x, y)\) there exists a reverse arc \((y, x)\) so \((x, x) \in R_{st} \). By adding all missing pairs we get:

\[R_{st} = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}. \]

However, \(R_{st} \) is not reflexive, since \(d \in A \), but \((d, d) \notin R_{st} \). Now we have constructed a counter example for the given claim.

Note that \(R_{st} \) is not reflexive only in the case that \(A \) has some element \(a \) that doesn’t occur in \(R \) at all. In all other cases \(R_{st} \) is reflexive.

\(^1\)Here \(f \) is a mapping \(f : B^n \rightarrow B \) where \(A \subseteq B \).
7. A partition of a set S is a collection $P = \{P_1, \ldots, P_n\}$ of sets such that all elements of S occur in exactly one P_i and no P_i is empty. Formally: $P \subseteq 2^S$ is a partition if:

- $P_i \neq \emptyset$ for all $1 \leq i \leq n$.
- $P_i \cap P_j = \emptyset$ for all $i \neq j$.
- $\bigcup P_i = S$.

For example, the set Π of all possible partitions of $S = \{1, 2, 3\}$ is:

$$\Pi = \{\{\{1\}\}, \{\{2\}\}, \{\{3\}\}, \{\{1, 2\}\}, \{\{1, 3\}\}, \{\{2, 3\}\}, \{\{1, 2, 3\}\}\}$$

The picture below shows how the relation R is defined among the elements of Π (the reflexive arcs are left out of the picture for clarity):

![Diagram showing the relation R among partitions]

i) Reflexivity: Since $S_i \subseteq S_i$ for each $S_i \in \Pi_j$, the relation has the pair (Π_j, Π_j) for all Π_j (1 ≤ i ≤ |Π_j|, 1 ≤ j ≤ |Π|).

ii) Transitivity: If $(\Pi_i, \Pi_j) \in R$ and $(\Pi_j, \Pi_k) \in R$, then for each $S_i \in \Pi_i$ there has to exist $S_j \in \Pi_j$ such that $S_i \subseteq S_j$. From the definition of R we know that there has to be some $S_k \in \Pi_k$ such that $S_j \subseteq S_k$. Now $S_i \subseteq S_j \subseteq S_k$ so $S_i \subseteq S_k$ and there is a pair (Π_i, Π_k) in the relation.

iii) No non-trivial loops: If $(\Pi_i, \Pi_j) \in R$ and $(\Pi_j, \Pi_i) \in R$ we know that for all $S_i \in \Pi_i$ there has to exist some $S_j \in \Pi_j$ such that $S_i \subseteq S_j$. On the other hand, there also has to be some $S'_j \in \Pi_i$ where $S_j \subseteq S'_j$. From this we get that $S_i \subseteq S'_j$. Since by definition all sets in a partition Π_i are nonempty and all elements of S are in exactly one set S_i, the only possibility is that $S_i = S'_j$ and:

$$S_i \subseteq S_j \subseteq S_i.$$

This implies that $S_i = S_j$ and that $\Pi_i = \Pi_j$ so the loop is trivial.

The maximum element of R is the trivial partition that has S as its only element. The minimum element is a partition where all elements of S belong to different partitions.