Ordinary exercises:

1. Find the smallest deterministic finite state automaton that accepts the same language as the following nondeterministic one:

2. Consider the following two regular expressions:
 \[R_1 = b^*a(a^*b^*)^* \]
 \[R_2 = (a \cup b)^*a(a \cup b)^* \]

 Do they define the same language? Justify your answer by constructing the corresponding deterministic automata.

3. Prove that the language
 \[L = \{aa^nb^n c^n \mid n \geq 0\} \]
 is not regular. Hint: remember that the intersection of two regular languages is always regular.

Demonstraatiotietävät:

4. Use a systematic algorithm to construct the regular expression that corresponds to the following finite state automaton:

5. Prove that the language \(L = \{ww^R \mid w \in \{a, b\}^*\} \) is not regular.

6. Let \(L \) be a regular language. Prove that the language \(L' = \{xy \mid x \in L \text{ and } y \notin L\} \) is regular.