Ordinary exercises:

1. Construct a two-tape Turing machine that decides the language:

\[\{a^n b^n c^n \mid n \geq 0\} \]

Use both tapes during the computation.

Convention: the input is read and the answer is written on the first tape as in the case of a single-tape machine. The second tape is initially empty and its read/write head is positioned in the first tape position. It doesn’t matter what the second tape contains in the end of the computation.

2. Form an unrestricted grammar (=type 0 grammar) \(G \) such that:

\[L(G) = \{ww \mid w \in \{a, b\}^*\} \]

3. It can be proved that every unrestricted grammar \(G \) can be converted into an equivalent grammar \(G' \) such that all rules of \(G' \) are of the form:

\[uAv \rightarrow uwv \] where \(A \in V - \Sigma \) and \(u, v, w \in V^* \).

Do the conversion to the grammar \(G = (V, \Sigma, R, S) \), where

\[
\begin{align*}
\Sigma &= \{a\}, \\
V &= \Sigma \cup \{S, [\cdot], A, N\}, \text{ and} \\
R &= \{S \rightarrow NA, S \rightarrow a, [N \rightarrow [NN, NA \rightarrow AAN, N] \rightarrow], [A \rightarrow a[\cdot] \rightarrow e].
\end{align*}
\]

Hint: Some of the rules are already in the desired form. You can convert the other rules by adding new non-terminals and splitting a rule into two or more new rules.

Demonstration exercises:

4. Construct an unrestricted grammar that generates the language:

\[L = \{a^{n^2} \mid n \geq 0\} \]

5. Prove that the following problem is undecidable:

Let \(M \) be a Turing machine. Does \(M \) stop when it is given the empty string \(e \) as input.

6. Show that the class of Turing acceptable languages is closed under union and intersection.