Taulumenetelmä modaalilogiikalle

- On vaikeaa löytää Hilbert-tyylisiä todistuksia:
 Käytössä Modus Ponens -sääntö: jotta voidaan johtaa \(Q \), täytyy johtaa \(P \) ja \(P \rightarrow Q \). Mutta mikä on sopiva \(P \)?
 Esim. \(\{ A \rightarrow B, A \rightarrow C \} \vdash A \rightarrow (B \land C) \)
 1. \(A \rightarrow B \)
 2. \(A \rightarrow C \)
 ...
 \(n. \ \ (A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow (B \land C))) \)

- Alikavaaperiaate: lauseen \(Q \) todistuksessa tarvitaan vain \(Q \)n alikaavoja.

 ➔ resoluutio, sekkuntikalkkyyi, taulumenetelmä.

Taulumenetelmä modaalilogiikalle K

- Otetaan käyttöön prefiksit, joiden ideana on antaa nimiä
 mahdollisille maailmille siten, että nimistä voidaan nähä,
 voidaan nimetystä maailmasta saavuttaa toinen nimetty maailma.

- **Prefiksi** on ei-tyhjä äärellinen jonon luonnollisia lukuja. Esim. \((1) \) ja
 \(\{1,1,1,111,2\} \) ovat prefikseja.

- **Prefiksoitu lause** on muotoa \(\sigma P \), missä \(\sigma \) on prefiksi ja \(P \) lause.
 (Idea: \(P \) on tosi maailmassa nimeltä \(\sigma \).) Esim. \((1)(P \lor \neg P) \) ja
 \(\{1,1,1,1,111,2\} \lor \neg P \) ovat prefiksoituja lauseita.

- \(\sigma \alpha \) on prefiksi, joka saadaan prefiksistä \(\sigma \) liittämällä sen perään luku
 \(n \), Esim, jos \(\sigma = (1) \), \(\sigma 11 = (1,11) \).

- **Prefiksi muotoa \(\sigma \alpha \) on K-saavutettavissa prefiksistä \(\sigma \), Esim.
 \(\{1,11,11\} \) on K-saavutettavissa prefiksistä \((1,11) \).

Taulusäännöt

Modaalilogiikkaa taulumenetelmä koostuu lauselogiikan säännöistä ja
moodalilsänneistä,

- Lauseologian säännöt (prefiksoihin lauseelle):

 \[
 \sigma \vdash \alpha \quad \alpha \equiv \alpha_1, \quad \alpha \equiv \alpha_2
 \]

 \[
 \frac{\sigma \vdash \alpha}{\sigma \vdash \alpha_1} \quad \frac{\sigma \vdash \alpha}{\sigma \vdash \alpha_2}
 \]

 Huom! Prefiksi ei muutu.

Esimerkkejä

1. \((3,2,1) \vdash (\neg P \rightarrow Q) \rightarrow P \)
2. \((3,2,1) \vdash (\neg P \rightarrow Q) \) \((1) \)
3. \((3,2,1) \vdash P \) \((1) \)
4. \((3,2,1) \vdash P \) \((2) \)
5. \((3,2,1) \vdash Q \) \((2) \)
6. \((3,2,1) \vdash P \) \((4) \times \)

© 2003 Teknillinen korkeakoulu, Tietojenkäsittelyteorian laboratorio

© 2003 Teknillinen korkeakoulu, Tietojenkäsittelyteorian laboratorio
Modaalisäännöt

Määritelmä. Prefiksi on haarassa
(i) tarjolla, jos se esiintyy haarassa,
(ii) rajoittamaton, jos ei ole minkään haarassa esintyyvän prefiksins
alkuosa.

Esim. Prefiksi \((1,1)\) on prefiksentä \((1,1,12,3)\) ja \((1,1)\) alkusa.

- **Modaalisäännöt**
 - □-sääntö:
 \[\frac{\sigma ◦ P}{\sigma ◦ P} \]
 mille tahansa tarjolla olevalle prefiksille \(σ\),
 - ◯-sääntö:
 \[\frac{\sigma ◯ P}{\sigma ◯ P} \]
 rajoittamattomalle prefiksille \(σ\).

Taulutodistus

Määritelmä.

- Taulun haara on suljettu, jos se sisältää sekä \(σP\) että \(σ^1P\) jollekin
 lauseelle \(P\) ja prefikssille \(σ\) tai jos se sisältää lauseen \(σ\) tai lauseen
 \(σ\)−T.
- Taulu on suljettu, jos jokainen sen haara on suljettu,
- Lauseen **P** kodistus on taulu, jonka juurena on \((1)\)−\(P\) ja joka on
 suljettu,

Esimerkkejä.

1. \((1)\)−\((\square P \to \square ◯ P)\)
2. \((1)\)\(\square P\) \((1)\)
3. \((1)\)\(\square ◯ P\) \((1)\)
4. \((1,1)\)\(\square ◯ P\) \((3)\)
5. \((1,1)P\) \((2)\)
6. \((1,1,1)\)−\(P\) \((4)\)
7. \((1,2)\)−\(P\) \((3)\)
8. \((1,2,3)\)−\(P\) \((7)\)
9. \((1,2)P\) \((2)\)

Virheettömyys (soundius)

Teoreema. Jos lauseelle P löytyy todistus, lause P on K-pätevä.

Todistus. (Seuraavan osatulosten avulla)

- Määritellään taululle K-toteutuva: taulu on K-toteutuva, jos sen jokin haara "vastaa" mallia.
- Osoitetaan, että (i) K-toteutuva taulu ei voi sulkeutua,
 (ii) jos P ei ole K-pätevä, taulu $(1)\neg P$ on K-toteutuva,
 (iii) jokainen sääntö säilyttää K-toteutuvuuden: jos taulu on K-toteutuva, taulun säännön soveltamisesta, se on K-toteutuva myös säännön soveltamisen jälkeen.

Tällöin jos P ei ole K-pätevä, lauseen $(1)\neg P$ taulu säilyy avoimena.

⇒ Jos taulu lauseelle $(1)\neg P$ on suljettu, lause P on K-pätevä.

Määritelmä. Taulu on K-toteutuva, jos joku sen haaroista on K-toteutuva.

Taulun haara on K-toteutuva, jos haaraassa esiintyvien prefiksoitujen lauseiden joukko on K-toteutuva,

Prefiksoitujen lauseiden joukkoon Σ on K-toteutuva, jos löytyy malli $M = (S,R,v)$ ja kuvaus λ_P säännöksiä, prefikseistä prefikseistä joukolle S s.e,

1. Jos prefiksit σ ja τ esiintyvät joukossa Σ ja τ on K-sääntettävissä prefiksiksi σ, tällöin $\lambda_P(\tau)$.
2. Jos $\sigma P \in \Sigma$, niin $M,\lambda_P(\tau)\models P$.

⇒ (i) K-toteutuva taulu ei voi sulkeutua,
⇒ (ii) Jos lause P ei ole K-pätevä, taulu $(1)\neg P$ on K-toteutuva.

Näin on, koska lauseella $\neg P$ on malli $M = (S,R,v)$, jolle M,θ'\models \neg P$. Tällöin haara $(\neg P)$ on K-toteutuva kuvaauksella $\lambda_P(\neg P) = \neg \lambda_P$.

⇒ Γ' K-toteutuva.
• $\sigma \vdash P$, rajoittamattomalle prefiksille σn.

Tällöin taulussa Γ haara, jonka lausejoukko $\Sigma = \sum \{ \sigma n \vdash P \}$.
Koska $\sigma \vdash \Gamma \vdash \Sigma$, joten on olemassa t, $N(\sigma)\Gamma t$, $\Sigma t \vdash \Gamma P$.
Koska σn ei ole mikään σ prefiks in alkuvosa, kuvausta N voidaan laajentaa: $N(\sigma n) = t$, Tällöin $M, N(\sigma n) \vdash P$.

$\implies \Gamma \vdash K$-vastuu.

Täydellisyys

Miten taata, että jokaiselle pätevälle lauseelle löytyy taulutodistus, kun taulun haarat voivat olla ärettömät? Milloin sääntöjä on sovellettu riittävästi/reilusti?

\implies Taulun rakentamisesta tarvitaan systemaattinen menetelmä, jossa kaikkia sääntöjä on käytetty riittävästi eli jokaiselle avoimelle haaralle Θ pätee:

(i) Jos $\sigma \vdash P \in \Theta$, tällöin $\sigma P \in \Theta$.
(ii) Jos $\sigma P \in \Theta$, tällöin $\sigma P_1 \in \Theta$ tai $\sigma P_2 \in \Theta$.
(iii) Jos $\sigma \in \Theta$, tällöin $\sigma P_1 \in \Theta$ ja $\sigma P_2 \in \Theta$.
(iv) Jos $\sigma \vdash P \in \Theta$, $\sigma n \vdash \Theta$, jollakin n.
(v) Jos $\sigma \vdash P \in \Theta$, $\sigma n Q \in \Theta$ kaikilla σn, jotka tarjolla Θ:ssa.

Huom! Systemaattinen menetelmä takaa täydellisyyn mutta voi sallia ärettömät taulut, jos ei todistettava lause ole pätevä.

Ratkaisumenetelmä takaa, että taulun rakentaminen päättyä ärellisellä askelmäärollalla, olipa todistettava lause pätevä tai ei.

Teoreema. (Täydellisyys) Jos P on K-pätevä, lauseen P systemaattinen K-taulu sulkeutuu,

Todistus. Osoitetaan, että jos lauseen P systemaattisessa K-taulussa on avoin haara, P ei ole K-pätevä.

Olko Θ valmiin systemaattisen taulun avoin haara ja olko $M = (S, R, v)$ seuraava malli (vastamalli),

$1.$ S on Θ:ssa esiintynyt prefiksien joukko,

$2.$ $\sigma R t$ jossa t on σ-saayttetavissa σ-sta,

$3.$ $v(\sigma, Q) = \text{true}$ jos σQ esiintyy Θ:ssa atomilauseelle Q.

Teoreema seuraa seuraavasta tuloksesta: jos $\sigma Q \in \Theta$, niin $M, \sigma \vdash Q$.

(Tällöin koska $(1: P)$ jokaisessa haarassa, $M, (1) \vdash P$, joten P ei ole K-pätevä).
Todistetaan inductiolla lauseen Q pituuden suhteen:

jos $\sigma Q \in \theta$, $M, \sigma \models Q$.

- (literaali) Jos Q on atomilause ja $\sigma Q \in \theta$, niin $v(\sigma, Q) = \text{true}$ ja $M, \sigma \models Q$.

Jos $\neg Q \in \theta$, Q on atomilause ja $\sigma Q \notin \theta$, Tällöin $M, \sigma \not\models Q$ ja $M, \sigma \models \neg Q$.

Induktiohypoteesi: Jos Q on lyhyempi kuin j ja $\sigma Q \in \theta$, tällöin $M, \sigma \models \neg j Q$.

Olkoon lauseen Q pituus j. Nyt Q on jokin seuraavista:

- (Muotoa $\neg \neg Q$) Jos $\neg \neg Q \in \theta$, tällöin $\sigma Q \in \theta$, $[H] M, \sigma \models Q$.

Tätten $M, \sigma \models \neg \neg Q$.

2. Ratkaisuproseduuri (lauseen P K-pätevyydelle):

1. Taulun juureksi (1) $\rightarrow P$.

2. WHILE taulu ei suljettu eikä kaikkia lauseita merkittykysä DO BEGIN

2.1 Valitaan taulusta ylin kääntämätön solmu σQ.

2.2 Jos Q ei ole literaali, jakaiselle haaralle θ, joka kulkee σQ kautta:

- Jos σQ on muotoa $\sigma \alpha$, lisätään haaran θ lopun ensin $\sigma \alpha_1$ ja sitten $\sigma \alpha_2$.

- Jos σQ on muotoa $\sigma \beta$, lisätään θ.n loppupuksi lapisolmun $\sigma \beta_1$ ja $\sigma \beta_2$.

- Jos σQ on muotoa $\sigma \neg P$ lisätään haaran θ loppupuolku $\sigma \neg P$ jollekin tässä haarakkaajottamalle σn sekä tämän jälkeen σnX kulkelee

haarassa esiintyvälle σX.

- Jos σQ on muotoa σP, jakakkein tässä haarakasta tarjolla oleville σn lisätään

haarant θ loppupuolku σnP.

2.3 Merkitään σQ käytettävä.

END.

3. Esimerkki. Tutkitaan taulumenetelmällä, onko $\square P \rightarrow \square \square P$ K-päteväs.

Rakennetaan K-taulu ratkaisuproseduurilla.

1. $\langle 1 \rangle \neg \langle 1 \rangle \neg \neg P$ (1)

2. $\langle 1 \rangle \neg \neg \neg P$ (1)

3. $\langle 1 \rangle \neg \neg \neg \neg P$ (1)

4. $\langle 1, 2 \rangle \neg \neg P$ (3)

5. $\langle 1, 2 \rangle P$ (2/3)

6. $\langle 1, 2, 3 \rangle \neg P$ (4)

Koska taulu jää auki, voidaan ajoimesta haarasta koota vastamallin

$M = \langle S, R, v \rangle$, missä $S = \{ \langle 1 \rangle, \langle 1, 2 \rangle, \langle 1, 2, 3 \rangle \}$

$R = \{ \langle 1 \rangle, \langle 1, 2 \rangle, \langle 1, 2, 3 \rangle \}$ ja $v(\sigma, P) = \text{true}$ jos $\sigma = \langle 1, 2 \rangle$.

Nyt $M, \langle 1 \rangle \not\models \neg \square \square P$.

© 2003 Teknillinen korkeakoulu, Tietojenkäsittelyteorian laboratorio
Muut modaalilogiikat

Laajennetaan edellä esitetty taulumenetelmä käsittelemään myös muita modaalilogiikkoita kuin K.

Määritelmä. Prefiksi \(\tau \) on prefiksin \(\sigma \) yksinkertainen jatko, jos \(\tau \) on muotoa \(\sigma \eta \) jollekin \(\eta \).

Taulumenetelmä modaalilogiikalle L:

-\(\Box \)-sääntö:

\[
\frac{\sigma \Box \eta}{\tau \Box \eta} \quad \frac{\sigma \eta}{\tau \eta}
\]

missä \(\tau \) on haarassa rajoittamaton prefiksin \(\sigma \) yksinkertainen jatko,

\(\Box \)-sääntö:

\[
\frac{\sigma \Box \eta}{\tau \Box \eta} \quad \frac{\sigma \Box \eta}{\tau \Box \eta}
\]

missä \(\tau \) L-saavutettavissa prefiksistä \(\sigma \) ja

1. logiikoihelle K, KB, K4
 \(\tau \) on tarjolla haarassa;

2. logiikoihille D, T, DB, B, D4, S4, S5
 (i) \(\tau \) on tarjolla haarassa tai
 (ii) \(\tau \) on rajoittamaton prefiksin \(\sigma \) yksinkertainen jatko.

Määritelmä. Prefiksien saavutettavuusrelaatio:

1. yleinen, jos \(\sigma \eta \) on saavutettavissa prefiksitä \(\sigma \) kaikilla \(\eta \);
2. käänteinen, jos \(\sigma \eta \) on saavutettavissa prefiksitä \(\sigma \eta \) kaikilla \(\eta \);
3. reflektiivinen, jos \(\sigma \eta \) on saavutettavissa \(\sigma \eta \):
4. transitiivinen, jos \(\sigma \eta \) saavutettavissa prefiksitä \(\sigma \) aina, kun \(\sigma \eta \) on \(\tau \eta \) alkuosa;
5. universalinen, jos prefiksi on saavutettavissa mistä tahansa prefiksistä,

Logiikka L | L-saavutettavuus

K, D	yleinen
T	yleinen, reflektiivinen
KB, DB	yleinen, käänteinen
B	yleinen, reflektiivinen, käänteinen
K4, D4	yleinen, transitiivinen
S4	yleinen, reflektiivinen, transitiivinen
S5	universali
D-taulutodistus lauseelle $\square P \rightarrow \neg \neg P$,
1. $\langle 1 \rangle \neg (\square P \rightarrow \neg \neg P)$
2. $\langle 1 \rangle \square P$ (1)
3. $\langle 1 \rangle \neg \square \neg P$ (1)
4. $\langle 1 \rangle \neg \neg P$ (3)
5. $\langle 1, 2 \rangle \neg P$ (4) Huom. 2.(ii)
6. $\langle 1, 2 \rangle P$ (2)

×

K4-taulutodistus lauseelle $\square P \rightarrow \square \square P$,
1. $\langle 1 \rangle \neg (\square P \rightarrow \square \square P)$
2. $\langle 1 \rangle \square P$ (1)
3. $\langle 1 \rangle \neg \square \square P$ (1)
4. $\langle 1, 2 \rangle \neg P$ (3)
5. $\langle 1, 2, 3 \rangle \neg P$ (4)
6. $\langle 1, 2, 3 \rangle P$ (2) Huom. transit.

×

T-taulutodistus lauseelle $\square P \rightarrow P$,
1. $\langle 1 \rangle \neg (\square P \rightarrow P)$
2. $\langle 1 \rangle \square P$ (1)
3. $\langle 1 \rangle \neg P$ (1)
4. $\langle 1 \rangle P$ (2) Huom. refleksiosisys

×

KB-taulutodistus lauseelle $P \rightarrow \square \square P$,
1. $\langle 1 \rangle \neg (P \rightarrow \square \square P)$
2. $\langle 1 \rangle P$ (1)
3. $\langle 1 \rangle \neg \square \square P$ (1)
4. $\langle 1, 2 \rangle \neg \square P$ (3)
5. $\langle 1 \rangle \neg P$ (4) Huom. käänteisys

×
Systemaattinen L-taulu lauseelle P

Kuten logiikalle K, mutta kohta 2.2 tarkennettuna:
2.2 Jos Q ei ole literaali, jokaiselle σQ kautta kulkeva luonnehmalle haaralle θ:
- Jos σQ on muotoa $\sigma \circ \circ P \ (\sigma \circ P)$, lisätään haaran θ loppuun solmu $\sigma n \sim P$ ($\sigma n P$) jollekin tässä haarassa rajoittamattomalle σn.
- Jos σQ on muotoa $\sigma \circ P \ (\sigma \circ \circ P)$,
 (a) kun L on K, KB, $K4$, T, B, S4, S5,
 jokaiselle θsä tarjolla olevalle σ', joka on L-saavutettavissa σsta,
 lisätään θn loppuun solmu $\sigma' P \ (\sigma' P)$ ja lopuksi $\sigma \circ P \ (\sigma \circ P)$.
 (b) kun L on D, DB, $D4$:
 jokaiselle θsä tarjolla olevalle σ', joka on L-saavutettavissa σsta,
 lisätään θn loppuun solmu $\sigma' P \ (\sigma' P)$. Jos tällaisia prefiksejä σ' ei ole,
 lisätään θn loppuun solmu $\sigma n P \ (\sigma n P)$ jollekin tässä haarassa
 rajoittamattomalle σn, Kummassakin tapauksessa lisätään vielä haaran
 loppuun $\sigma \circ P \ (\sigma \circ P)$.

© 2003 Teknillinen korkeakoulu, Tietojenkäsittelyteorian laboratorio

Esimerkki. SS-taulutqistus lauseelle

$\sim \sim \sim P \to \sim \sim \sim P$

1. $1 \sim \sim \sim P \to \sim \sim \sim P$
2. $1 \sim \sim \sim P$
3. $1 \sim \sim \sim P$
4. $2 \sim P$
5. $3 \sim \sim \sim P$
6. $3 \sim \sim \sim P$
7. $2 P$

© 2003 Teknillinen korkeakoulu, Tietojenkäsittelyteorian laboratorio

Systemaattinen menetelmä (SS-pätevyysta):

1. Taulun juureksi $1 \sim P$.
2. WHILE taulu ei suljettu eikä kaikkia lauseita merkitty käytetyiksi DO BEGIN
2.1 Valitään taulusta ylin käyttämätön solmu nQ.

2.2 Jos Q ei ole literaali, jokaiselle avoimelle haaralle θ, joka kulkee nQ kautta:
 - Jos nQ muotoa $n \alpha$, lisätään haaran θ loppuun ensin $n \alpha_1$ ja sitten $n \alpha_2$.
 - Jos nQ on muotoa $n \beta$, lisätään θn loppuun kaikki lapsisolmua $n \beta_1$ ja $n \beta_2$.
 - Jos nQ on muotoa $n \circ P$, lisätään haaran θ loppuun solmu $k \sim P$ jollekin
 tässä haarassa rajoittamattomalle k sekä tämän jälkeen $k \times$ kullekin
 haarassa esiintyvälle $f \times k$.
 - Jos nQ on muotoa $n \circ P$, kaikille tässä haarassa tarjolla oleville k lisätään
 haaran θ loppuun solmu $k \times P$.
2.3 Merkitään nQ käytetyksi,
 END.

© 2003 Teknillinen korkeakoulu, Tietojenkäsittelyteorian laboratorio
KD45-taulut

Prefikseinä riittävät luonnolliset luut.

\[\neg \Box \text{-sääntö: } \frac{n \neg \Box P}{k \neg P} \quad \frac{n \Diamond P}{k P} \]

missä \(k \) ei esinyn haarassa.

\[\Box \text{-sääntö: } \frac{n \Box P}{k P} \quad \frac{n \neg \Diamond P}{k \neg P} \]

mille tahansa \(k \neq 1 \).

Esimerkki. Vertaa,

\((\Box P \rightarrow P) \):

1. \(\neg (\Box P \rightarrow P) \)
2. \(\Box P \) (1)
3. \(\neg \Box P \) (1)

\(\Box(\Box P \rightarrow P) \):

1. \(\neg (\Box P \rightarrow P) \)
2. \(\Box (\Box P \rightarrow P) \) (1)
3. \(2 \Box P \) (2)
4. \(2 \Box P \) (2)
5. \(2 P \) (3)

\[\times \]

Looginen seuraavuus

Tehtävä: \(\Sigma \models \Box \neg \neg P \rightarrow P \)

Taulumenetelmä: asetetaan taulun juureksi \((1) \rightarrow P \) ja käytetään taulun

rakentamiseen L-logiikan mukaisia taulusääntöjä, joiden lisäksi voidaan

käyttää kahta uutta sääntöä premisseille:

Globaali sääntö: solmulla \(Q \) voidaan jatkaa mitä tahansa haaraa mille
tahansa haarassa tarjolla olevalla prefikseilla \(Q \) ja mille tahansa
globaalille premissille \(Q \in \Sigma \).

Lokaali sääntö: solmulla \((1) Q \) voidaan jatkaa mitä tahansa haaraa

mille tahansa lokaalille premissille \(Q \in \Sigma \).

Esimerkki. \(\{ \} \models \Box P \rightarrow Q \rightarrow Q \):

1. \((1) \neg Q \)
2. \((1) \Box P \rightarrow Q \) (LP)
3. \((1) \neg P \) (2)
4. \((1) Q \) (2)
5. \((1,2) \neg P \) (2)
6. \((1,2) P \) (GP)

\[\times \]