Ratkaisumenetelmät

- Temporaalilogiikat (CTL/LTL) ratkevaa, koska niillä on äärellisen mallin ominaisuuksia, mutta tehokkaampia ratkaisumenetelmiä saadaan taulujen ja automaattiteorian avulla.
- Taulumenetelmä (esim. CTL)
 (i) Rakennetaan tutkittavalle lauseelle taulugraafi, joka sisältää (oleellisesti) kaikki lauseen mahdolliset mallit.
 (ii) Kasitetaan taulua ja tarkistetaan, jääkö siihen ko, lauseen malleja.
- Automaattiteoreettinen menetelmä (esim. LTL)
 (i) Rakennetaan tutkittavalle lauseelle äärellistilainen (Büchi-) automaatti, joka hyväksyy äärettömän pitkiä sanoja (polkuja) sitten, että automaatti hyväksyy (oleellisesti) kaikki lauseen toteuttuvat täydet polut.
 (ii) Tarkistetaan, onko automaatin hyväksymä kieli tyhjä.

© 2003 Teknillinen korkeakoulu, Tietojenkäsittelyteorian laboratorio

Positiivinen normaalimuoto

CTL-lause muuntetaan positiiviseen normaalimuotoon seuraavilla säätöillä:
- $P \rightarrow Q \quad \iff \quad \neg P \lor Q
- \neg (P \lor Q) \quad \iff \quad \neg P \land \neg Q
- \neg (P \land Q) \quad \iff \quad \neg P \lor \neg Q
- \neg P \quad \iff \quad \neg E(\neg P)
- \neg AGP \quad \iff \quad EF\neg P
- \neg EFP \quad \iff \quad AG\neg P
- \neg EGP \quad \iff \quad AF\neg P
- \neg AFP \quad \iff \quad EG\neg P
- \neg AXP \quad \iff \quad EX\neg P
- \neg EXP \quad \iff \quad AX\neg P

Huom! Lyhennysmerkinnät:
- $A(PBQ)\quad: \quad E(\neg P)UQ$
- $E(PBQ)\quad: \quad A(\neg P)UQ$

© 2003 Teknillinen korkeakoulu, Tietojenkäsittelyteorian laboratorio

Positiivinen normaalimuoto (II)

- Positiivisessa normaalimuodossa käytetään konnektiiveja \land, \lor ja negaatiota esiintyy vain atomilauseiden edessä.
- Merkintä $\neg P$: lauseen $\neg P$ positiivinen normaalimuoto,

Esimerkki. $\neg AG(R \rightarrow (\neg Q \land A(PUQ)))$: $EF(R \land (Q \lor E(\neg PBQ)))$

koska $\neg AG(R \rightarrow (\neg Q \land A(PUQ)))$
 $\iff \quad EF(\neg R \lor \neg (Q \land A(PUQ)))$
 $\iff \quad EF(R \land (Q \lor E(\neg PBQ)))$
 $\iff \quad EF(R \land (Q \lor E(\neg PBQ)))$

© 2003 Teknillinen korkeakoulu, Tietojenkäsittelyteorian laboratorio
Alustava taulu

Alustavan taulun T_0 muodostaminen:

- Aloitetaan OR-solmusta $D_0 = \{P\}$.
- OR-solmun D seuraajat ovat AND-solmuja, jotka saadaan soveltamalla α/β-säännöllä solmun D.
- AND-solmun C seuraajat ovat OR-solmuja, jotka saadaan seuraajaseuraajalla solmuista C.

Taulu äärellinen

OR-solmun seuraajat

OR-solmun D seuraajat ovat Dsta seuraavilla α- ja β-säännöillä saatavat alaspäin suljetut joukot. Joukko C on alaspäin suljettu, kun seuraavat kaksi ehtoa toteutuvat:
(i) Jos $\alpha \in C$, $\alpha_1 \in C$ ja $\alpha_2 \in C$.
(ii) Jos $\beta \in C$, $\beta_1 \in C$ tai $\beta_2 \in C$.

α-säännöt:

$P \land Q$	AGP	EGP
P	P	P
Q	AXAGP	EXEGP
$A(PBQ)$	$E(PBQ)$	
$\neg Q$	$\neg Q$	
$P \lor AXA(PBQ)$	$P \lor EXE(PBQ)$	

OR-solmun seuraajat (II)

β-säännöt:

| $P \lor Q$ | $A(PUQ)$ |
| $P \mid Q$ | $E(PUQ)$ |

Huom! Literaaleille sekä AXP- ja EXP-lauseille ei sääntöjä.

OR-solmun seuraajat (II)

Esimerkki.

Olkoon $D = \{\text{AXEF}(P \land Q) \lor R\}$

D:sta saatavat alaspäin suljetut joukot ovat:

- $C_1 = \{\text{AXEF}(P \land Q) \lor R, \text{EF}(P \land Q) \lor R, P \land Q, P, Q\}$
- $C_2 = \{\text{AXEF}(P \land Q) \lor R, \text{EF}(P \land Q) \lor R, (P \land Q) \lor R, R\}$
- $C_3 = \{\text{AXEF}(P \land Q) \lor R, \text{EF}(P \land Q) \lor R, \text{EXEF}(P \land Q) \lor R\}$
- $C_4 = \{\text{AXEF}(P \land Q) \lor R, \text{AXAF}(P \land Q) \lor R\}$

(Alaspäin suljetut joukot voimakkaasti lauseologian taulumenetelmän tapaan.)
AND-solmun seuraajat

AND-solmun C seuraajat saadaan seuraajastamällä:

Olkoan joukossa C seuraavatilanteet:

\[AX_1, \ldots, AX_k, \]

\[EX_1, \ldots, EX_k. \]

Tällöin C:llä on seuraajat:

\[D_1 = \{ P_1, \ldots, P_1, Q_1 \} \]

\[D_k = \{ P_1, \ldots, P_k, Q_k \} \]

Esimerkki. Olkoon

\[C = \{ A(\text{PUQ}), AXA(\text{PUQ}), EGP, P, EXEGP, EQF, EXEFQ \}. \]

Tällöin C:n seuraajat ovat

\[D_1 = \{ A(\text{PUQ}), EGP \} \]

ja

\[D_2 = \{ A(\text{PUQ}), EQF \}. \]

(Huom. Kullakin AND-solmulla pitää olla ainakin yksi seuraaja.)

Karsintasäännöt

Alustavasta taulusta \(T_0 \) saadaan lopullinen taulu suorittamalla karsintaa seuraavilla säännöillä, kunnes mitään niistä ei voida soveltaa.

- Poistetaan AND-solmu, joka sisältyy lauseen ja sen negaation,
- Poistetaan AND-solmu, jos yksikin sen alkuperäisistä seuraajista on poistettu,
- Poistetaan OR-solmu, jos kaikki sen alkuperäisistä seuraajista on poistettu,
- Poistetaan AND-solmu, jos jokin sen tulevaisuuslause ei toteudu tämän hetkisenä taulussa (mallintarkastus).

Tulevaisuuslausenteot ovat seuraavat muotoa olevat lauseet:

\[E(\text{PUQ}), EQF, A(\text{PUQ}), AFQ \]

Karsintasäännöt (II)

Tulevaisuuslausenteiden toteutaminen taulussa määritellään seuraavasti:

- Tulevaisuuslause \(EFQ(\text{E(\text{PUQ})}) \) toteutuu AND-solmuissa C, jossa taulusta löytyy solmusta \(C \) lähteä polku AND-solmumaa \(C' \), jossa on lause \(Q \) ja polun kaikissa muissa AND-solmuissa on lause \(P)\),
- Tulevaisuuslause \(AFQ(\text{A(\text{PUQ})}) \) toteutuu AND-solmuissa C, jossa taulusta löytyy asyklinen aligraafi, jolle pätee: (i) Aligraafin juuri on solmu C. (ii) Kullakin OR-sisäsolmulle täsmälleen yksi sen AND-seuraajasolmu on aligraafissa, (iii) Kullakin AND-sisäsolmuelle kaikki sen OR-seuraajasolmut ovat mukana aligraafissa, (iv) Kaikissa aligraafin lehtisolmuissa on lause \(Q \) ja kaikissa muissa AND-solmuissa \(P)\).
(Esimerkki jatkuu.) Yleensä taulut tehdään graafin muotoon:

\[
\begin{array}{c}
D_0 : EFP \land \neg P \\
C_1 : EFP \land \neg P \\
EFP, \neg P, P \text{ (karsitaan)}
\end{array}
\]

\[
\begin{array}{c}
D_1 : P \\
C_3 : EFP \\
C_4 : EFP \land \neg P, P
\end{array}
\]

\[
\begin{array}{c}
D_2 : EFP \\
C_3 : EFP \\
C_4 : EFP \land \neg P, P
\end{array}
\]

Esimerkki. Anna CTL-lauseelle \(EFP \land \neg P \) malli, Muodostetaan malli \(\langle S, R, v \rangle \) edellä annettua taulusta \(T_1 \) esimerkiksi seuraavasti:

\[
S = \{C_2, C_3, C_5\}, \quad R = \{\langle C_2, C_3 \rangle, \langle C_3, C_5 \rangle, \langle C_5, C_5 \rangle\}, \quad v(P, s) = \text{true}, \quad \text{jos} \quad s = C_3, \quad \text{mutta} \quad v(P, s) = \text{false},
\]

Toinen vaihtoehto:

\[
S = \{C_2, C_4\}, \quad R = \{\langle C_2, C_4 \rangle, \langle C_4, C_4 \rangle\}, \quad v(P, C_2) = v(P, C_4) = \text{false}
\]

Huom! Esimerkiksi malli, jossa

\[
S = \{C_2, C_4\}, \quad R = \{\langle C_2, C_4 \rangle, \langle C_4, C_4 \rangle\}, \quad v(P, C_2) = v(P, C_4) = \text{false}
\]

ei kelpaa, koska solmujen \(C_2 \) ja \(C_4 \) tulevaisuuslause \(EFP \) ei toteudu tässä mallissa.

CTL-toteutuvuus tauluilla

Teoreema. Olkoon CTL-lause \(P \) positiivisessa normaalimuodon, Tällöin \(P \) on toteutuva joss lopullisessa taulussa \(T_1 \) on AND-solmu, joka sisältää lauseen \(P \).

- CTL-taulu antaa lauseen \(P \) mallin:
 - Mallin tilat AND-solmuja ja valjaatio suoraan AND-solmun sisältämistä atomilauseista.
 - Malliin mukaan ainakin yksi AND-solmu, joka sisältää lauseen \(P \).
 - Seuraajat valitetaan siten, että malli on sarjallinen ja että kaikkien mukaan tulevien AND-solmujen tulevaisuuslauseet toteutuvat,

- Taulumenetelmä ohjelmasynteessä:
 - (i) Ohjelman määrittely CTL-lauseina,
 - (ii) Taululla määrittely automaattisesti malli, joka antaa ohjelman ohjausrakenteen.

CTL-pätevyys tauluilla

- Lause on pätevä joss sen negaatio ei ole toteutuva,
- Toteutuvuus voidaan selvittää taulumenetelmällä:
 - (i) Muodostetaan lauseen \(\varphi \) negaation positiivinen normaalimuoto \(\neg \varphi \).
 - (ii) Rakennetaan taulu lauseelle \(\neg \varphi \).
- \(\varphi \) on pätevä joss \(\neg \varphi \) ei ole toteutuva joss lopullisessa taulussa ei ole yhtään AND-solmua, joka sisältää lauseen \(\neg \varphi \).
Esimerkki. Onko CTL-lause ϕ:

$$\text{EX}(P \lor Q) \to (\text{EXP} \lor \text{EX}Q)$$

pätevä?

Lauseen $$\neg \varphi$$ positiivinen normaalimuoto $$\neg \varphi$$:

1. $$\neg (\text{EX}(P \lor Q) \to (\text{EXP} \lor \text{EX}Q))$$
2. $$\neg \text{EX}(P \lor Q) \land \neg (\text{EXP} \lor \text{EX}Q)$$
3. $$\neg \text{EX}(P \lor Q) \land (\neg \text{EXP} \land \neg \text{EX}Q)$$
4. $$\neg \varphi: \text{EX}(P \lor Q) \land (\neg \text{EXP} \land \neg \text{EX}Q)$$

© 2003 Teknillinen korkeakoulu, Tietojenkäsittelyteorian laboratorio

Esimerkki jatkuu.

Taulu: $$D_0 = \{ \neg \varphi \}$$,

- $$D_0$$: AND-seuraajat:
 $$C_1 = \{ \neg \varphi. \text{EX}(P \lor Q), (\text{AX} \neg P \land \text{AX} \neg Q), \text{AX} \neg P. \text{AX} \neg Q \}$$
- $$C_1$$: OR-seuraajat: $$D_1 = \{ P \lor Q, \neg P, \neg Q \}$$

- $$D_1$$: AND-seuraajat:
 $$C_2 = D_1 \cup \{ P \}$$ ja $$C_3 = D_1 \cup \{ Q \}$$
- $$C_2$$: OR-seuraajat: $$D_3 = \{ \}$$
- $$C_3$$: OR-seuraajat: $$\{ \} = D_3$$

- $$C_3$$: AND-seuraajat: $$C_4 = \{ \}$$
- $$C_4$$: OR-seuraajat: $$\{ \} = D_3$$

Alustava taulu $$T_0$$ on valmis,

© 2003 Teknillinen korkeakoulu, Tietojenkäsittelyteorian laboratorio

Esimerkki jatkuu.

Alustava taulu $$T_0$$:

- $$D_0: \neg \varphi$$
- $$C_1: \neg \varphi. \text{EX}(P \lor Q), (\text{AX} \neg P \land \text{AX} \neg Q), \text{AX} \neg P. \text{AX} \neg Q$$
- $$D_1: P \lor Q, \neg P, \neg Q$$
- $$C_2: P \lor Q, \neg P, \neg Q, P$$
- $$C_3: P \lor Q, \neg P, \neg Q, Q$$

© 2003 Teknillinen korkeakoulu, Tietojenkäsittelyteorian laboratorio
LTL-toteutuvuus tauluilla

CTL-työkalut antavat menetelmän myös LTL-toteutuvuuden tarkastamiseen:

Esimerkki.

LTL-lause $G(\neg PUQ)$ on toteutuva jossa

CTL-lause $AG(\neg PUQ)$ on toteutuva.

Tehokkaasti toteutettavia aliluokkia

- Toteutuvuusongelma ratkeaa polynoomisessa ajassa esim. ohjelmasynteesin kannalta mielenkiintoisissa tapauksissa,
- Esim. SCTL (yksinkertaistettu CTL)

 $P_1 \lor \cdots \lor P_n$

 $\text{AG}(P_1 \lor \cdots \lor P_n)$

 $\text{AG}(P_0 \rightarrow \text{AF}(P_1 \lor \cdots \lor P_n))$

 $\text{AG}(P_0 \rightarrow \text{AX}(P_1 \lor \cdots \lor P_n) \land \text{EX}(Q_1 \lor \cdots \lor Q_m))$

 jossa ESColetus pätee: tulevuuuslauseet eivät riipu historiasta,
- Esim. RLTL (rajoitettu LTL):

 $G(P_1 \lor \cdots \lor P_n)$

 $G(P_0 \rightarrow F(P_1 \lor \cdots \lor P_n))$

 $G(P_0 \rightarrow X(P_1 \lor \cdots \lor P_n))$

Laskennallinen vaativuus

- **CTL**

 Mallintarkastus: P-täydellinen

 $O(|M| \cdot |P|)$

 Toteutuvuus: EXPTIME-täydellinen

- **LTL**

 Mallintarkastus: PSPACE-täydellinen

 $O(|M| \cdot \text{exp}(|P|))$

 Toteutuvuus: PSPACE-täydellinen

- **CTL***

 Mallintarkastus: PSPACE-täydellinen

 $O(|M| \cdot \text{exp}(|P|))$

 Toteutuvuus: 2EXPTIME-täydellinen