Please note the following: your answers will be graded only if you have passed
all the three home assignments before the exam!
Assignment 1 Answer and justify exactly (at most half a page per item).
(a) True or false: the set $\{P(f(y), g(z, f(f(y)))), P(x, g(x, z))\}$ is unifiable.
(b) True or false: if Σ_{1} and Σ_{2} are sets of sentences such that $\Sigma_{1} \subseteq \Sigma_{2}$ and ϕ is a sentence such that $\Sigma_{1} \models \phi$, then also $\Sigma_{2} \models \phi$.
(c) True or false: a proof method M is sound, if every valid sentence ϕ is provable using the method M .
(d) True or false: the satisfiability problem of propositional logic is NP-complete.

Assignment 2 Examine if the given claim holds using semantic tableaux. If not, justify by giving a valuation/structure (a counter example).
(a) $\models \neg(A \wedge \neg B) \wedge(\neg C \rightarrow A) \rightarrow(A \wedge B) \vee(\neg A \wedge C)$
(b) $\{\forall x(P(x) \rightarrow Q(x)), \forall x(Q(x) \rightarrow R(x))\} \models \forall x(\neg P(x) \rightarrow \neg R(x))$
(c) $\{\forall x \neg(A(x) \leftrightarrow B(x)), \forall y A(y) \vee \forall y \neg A(y)\} \models \forall z B(z) \vee \forall z \neg B(z)$

Tableau proofs must contain all intermediary steps !!!

Assignment 3

(a) Derive a clausal form for the sentence

$$
\neg(\forall x P(x) \rightarrow \forall x \exists y Q(x, y)) \vee \neg \forall y P(y)
$$

Try to make it as simple as possible.
(b) Consider the following program P :

$$
\mathrm{v}=0 ; \mathrm{z}=0 \text {; while }(!(\mathrm{z}==\mathrm{y}))\{\mathrm{z}=\mathrm{z}+1 ; \mathrm{v}=\mathrm{v}-1\} ; \mathrm{v}=\mathrm{v}+\mathrm{x}
$$

Use weakest preconditions and a suitable invariant to establish

$$
\models_{p}[\text { true }] \mathrm{P}[\mathrm{v}==\mathrm{x}-\mathrm{y}] .
$$

Assignment 4 A directed graph consists of a set of nodes connected by directed arcs. Let us assume that the nodes of the graph are named with constants $\{a, b, \ldots\}$ while the arcs of the graph are represented using a predicate $A(x, y)=$ "there is an arc from the node x to the node $y "$.
(a) Define the predicates

$$
\begin{aligned}
C(x, y) & =\text { "there is a connection from the node } x \text { to the node } y " \\
\text { and } L(x) & =\text { "the graph has a loop that goes through the node } x "
\end{aligned}
$$

by taking the direction of arcs into account.
(b) Describe the directed graph given below using the predicate A. Use resolution to show that the sentence $\exists x(L(x) \wedge C(x, c))$ is a logical consequence of your description and the definitions of predicates C and L.

$$
a \longleftrightarrow b \longrightarrow c
$$

The name of the course, the course code, the date, your name, your student id, and your signature must appear on every sheet of your answers.

Feedback: http://www.tcs.hut.fi/Studies/T-79.144/

