Please note the following: your answers will be graded only if you have passed all the three home assignments before the exam!

Assignment 1 Answer and justify exactly (at most half a page per item).
(a) True or false: if $\Sigma \models \phi$ and $\models \phi \rightarrow \psi$, then $\Sigma \mid=\psi$.
(b) True or false: the empty clause \square can be obtained from the clauses $\{A, \neg B\}$ and $\{\neg A, B\}$ by resolution.
(c) True or false: Sheffer's stroke \mid is definable using Peirce's arrow \downarrow.
(d) True or false: the satisfiability problem of propositional logic is NPcomplete.

Assignment 2 Examine if the given claim holds using semantic tableaux. If not, justify by giving a valuation/structure (a counter example).
(a) $\quad=(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow C) \rightarrow(A \rightarrow B))$
(b) $\quad=(\forall x(P(x) \rightarrow \neg Q(x))) \rightarrow((\exists x Q(x)) \rightarrow(\exists x \neg P(x)))$
(c) $\{\forall x(P(x) \rightarrow R(x)), \neg \exists x(\neg R(x) \wedge Q(x))\} \vDash \forall x(P(x) \vee Q(x) \rightarrow R(x))$

Tableau proofs must contain all intermediary steps !!!

Assignment 3

(a) Derive a clausal form for the sentence $\neg(\forall x \forall y \neg B(y, x) \wedge \exists x(C(x) \rightarrow$ $A(x))$). Try to make it as simple as possible.
(b) Use a suitable invariant to establish that the function min below returns the least integer in a table a for which size >0 holds.

```
int min(int a[], int size) {
    int m=a[0], i=1;
    while(i<size) { if(a[i]<m) m=a[i]; i=i+1; }
    return m;
}
```

Assignment 4 Let us represent natural numbers $0,1,2, \ldots$ with ground terms $0, s(0), s(s(0)), \ldots$ built of a constant symbol 0 and a function symbol s which is interpreted as the function $s(x)=x+1$ for natural numbers x.
(a) Let the predicates $J 2(x), J 3(x)$ and $J 6(x)$ mean that a natural number x is divisible by two, three and six, respectively. Use predicate logic to define these predicates such that the definition of the predicate $J 6$ is based on the definitions of the predicates $J 2$ and $J 3$.
(b) Use resolution to show that if a natural number x is divisible by two and three, then the natural number $x+6$ is divisible by six.

The name of the course, the course code, the date, your name, your student id, and your signature must appear on every sheet of your answers.

Feedback: http://www.tcs.hut.fi/Studies/T-79.144/feedback.html

