Assignment 1 Answer and justify briefly, but exactly.
(a) Does the following hold: Sheffer's stroke \mid is definable in terms of Peirce's arrow \downarrow.
(b) Does the following hold: if ϕ and ψ are different sentences in propositional logic, then their clausal forms are different, too.
(c) Does the following hold: if $\Sigma \not \vDash \phi$ and $\Gamma \subseteq \Sigma$, then $\Gamma \not \vDash \phi$ (Σ and Γ are sets of sentences).
(d) Does the following hold: predicate logic is decidable.

Assignment 2 Examine if the given claim holds using semantic tableaux. If not, justify by giving a valuation/structure (a counter example).
(a) $\mid=(\neg B \rightarrow \neg A) \rightarrow((\neg B \rightarrow A) \rightarrow B)$
(b) $\{\forall x \forall y(R(x, y) \rightarrow R(y, x))\} \models \forall x \forall y(R(x, y) \vee R(y, x))$
(c) $\models \forall x(P(x) \leftrightarrow \neg Q(x)) \leftrightarrow \neg \exists x(P(x) \leftrightarrow Q(x))$

Tableau proofs must contain all intermediary steps !!!
Assignment 3 Formalize the following claims in terms of predicate logic:

1. If a brick is on another brick, it is not on the table.
2. Every brick is on the table or on another brick.
3. No brick is on a brick which is also on some other brick.
4. If a brick is on another brick, then the latter brick is on the table.

Use resolution to show that the sentence 4 is a logical consequence of the sentences 1-3.

Assignment 4 A directed graph consists of a set of nodes connected by directed arcs. Assume that nodes are represented with constants $\{a, b, \ldots\}$ while arcs are represented with a binary predicate $A(x, y)=$ "there is an arc leading from the node x to the node y ".
(a) Define the predicates

$$
C(x, y)=\text { "there is a connection from the node } x \text { to the node } y \text { " }
$$

and $L(x)=$ "the graph has a loop that goes through the node x "
by taking the direction of arcs into account.
(b) Describe the directed graph below using the predicate A. Show that $\exists x \exists y(L(x) \wedge A(x, y) \wedge L(y))$ is a logical consequence of your description and the definitions of predicates C and L. Use semantic tableaux.

$$
a \underset{\longleftrightarrow}{\longleftrightarrow} b \longrightarrow c
$$

The name of the course, the course code, the date, your name, your student id, and your signature must appear on every sheet of your answers.

