Please note the following: your answers will be graded only if you have passed all the three home assignments before the exam!

Assignment 1 Answer and justify briefly, but exactly.
(a) Does the following hold: it is possible to define the other propositional connectives $(\wedge, \vee, \leftrightarrow)$ using the connectives \rightarrow and $\underline{\vee}$ (exclusive or).
(b) Does the folloing hold: if Σ_{1} and Σ_{2} are sets of sentences such that $\Sigma_{1} \subseteq \Sigma_{2}$ and ϕ is a sentence such that $\Sigma_{1} \models \phi$, then also $\Sigma_{2}=\phi$.
(c) Does the following hold: a conjunctive normal form ϕ of a sentence in predicate logic is logically equivalent to the form ϕ^{\prime} obtained from ϕ by Skolemization.
(d) Does the following hold: the satisfiability problem SAT of propositional logic is NP-complete.

Assignment 2 Examine if the given claim holds using semantic tableaux. If not, justify by giving a valuation/structure (a counter example).
(a) $\quad=(\neg C \rightarrow A \wedge \neg B) \rightarrow((\neg C \rightarrow(A \rightarrow B)) \rightarrow C)$.
(b) $\{\exists x \exists y P(x, y), \forall x \forall y(P(x, y) \rightarrow Q(x, y))\} \vDash \exists x Q(x, x)$
(c) $\{\forall x(P(x) \rightarrow R(x)), \forall x(\neg Q(x) \rightarrow \neg R(x))\} \models \forall x(P(x) \rightarrow Q(x))$

Tableau proofs must contain all intermediary steps !!!
Assignment 3 Binary trees are represented in terms of a binary function symbol i (inner nodes) and a unary function symbol l (leaf nodes). In this way, the binary tree in the picture gets a representation $i(i(l(c), l(a)), l(b))$.
(a) Let the predicate $\mathrm{M}(x, y)$ mean that binary tree x is the mirror image of binary tree y. Define the predicate M using sentences of predicate logic (assuming the representation given above).
(b) Use resolution to find the mirror image of the following binary tree:

Assignment 4 Let us represent natural numbers $0,1,2, \ldots$ with ground terms $0, s(0), s(s(0)), \ldots$ built of a constant symbol 0 and a function symbol s which is interpreted as the function $s(x)=x+1$ for natural numbers x.
(a) Let the predicates $J 2(x), J 3(x)$ and $J 6(x)$ mean that a natural number x is divisible by two, three and six, respectively. Use predicate logic to define these predicates such that the definition of the predicate $J 6$ is based on the definitions of the predicates $J 2$ and $J 3$.
(b) Use semantic tableaux to show that if a natural number x is divisible by two and three, then the natural number $x+6$ is divisible by six.
The name of the course, the course code, the date, your name, your student id, and your signature must appear on every sheet of your answers.

