Assignment 1 Answer and justify briefly, but exactly.
(a) Does the following hold: if $\Sigma \models \phi$, then $\Sigma \cup\{\neg \phi\}$ is unsatisfiable.
(b) Does the following hold: if θ and θ^{\prime} are two most general unifiers of a set of atomic formulas S, then $\theta=\theta^{\prime}$.
(c) Does the following hold: at most 16 different binary connectives can be defined for propositional logic.
(d) Does the following hold: the empty clause \square can be obtained from the clauses $\{P(x), P(y)\}$ and $\{\neg P(z), \neg P(w)\}$ by resolution.

Assignment 2 Examine if the given claim holds using semantic tableaux. If not, justify by giving a valuation/structure (a counter example).
(a) $=(\neg B \rightarrow \neg A) \rightarrow((\neg B \rightarrow A) \rightarrow B)$
(b) $\{\forall x \exists y(P(x) \rightarrow Q(y)), \forall x P(x)\} \models \forall y Q(y)$
(c) $\{\forall x(A(x) \leftrightarrow \neg B(x)), \forall x(B(x) \leftrightarrow \neg C(x)), \forall x(C(x) \leftrightarrow \neg A(x))\} \models$ $\forall x(A(x) \wedge B(x) \wedge C(x))$

Tableau proofs must contain all intermediary steps !!!
Assignment 3 Show that the sentence

$$
\exists x(R(x) \wedge \neg R(f(f(x)))) \rightarrow \exists x(R(x) \wedge \neg R(f(x)))
$$

is valid by linear resolution.
Assignment 4 Natural numbers $0,1,2, \ldots$ are represented as ground terms $0, s(0), s(s(0)), \ldots$ built of a constant symbol 0 and a function symbol s which is interpreted as the function $s(x)=x+1$ for natural numbers x.
(a) Let the predicates $J 2(x), J 3(x)$ and $J 6(x)$ mean that a natural number x is divisible by two, three and six, respectively. Use predicate logic to define these predicates such that the definition of the predicate $J 6$ is based on the definitions of the predicates $J 2$ and $J 3$.
(b) Use semantic tableaux to show that if a natural number n is divisible by two and three, then the natural number $n+6$ is divisible by six.

