1 PREDIKAATTILOGIIKKA

1. Predikaattilogiikan kieli
2. Predikaattilogiikan semantiikka
3. Normaalimuodot
4. Semanttiset taulut predikaattilogikalle
5. Tietämysten esittämisestä
6. Herbrandin teoreema
7. Unifikaatio
8. Resolutiosääntö ja todistukset
9. Ohjelmien oikeellisuustarkastelut

1.1 Motivaatio

- Lauseologiikka on usein tarkoituksin liian yksinkertainen: olkoon
 $A = \text{"a on viallinen"}$, $B = \text{"b on viallinen"}$, $C = \text{"c on viallinen"}$.
 Tällöin kaikki ovat viallisia $= A \land B \land C$ ja
 "jokin on viallinen" $= A \lor B \lor C$.

- Erityisesti objektien välisten suhteiden kuvaaminen on hankalaa
 (tarvitaan paljon lauseita, jotka ovat muodoltaan samankaltaisia).

Esimerkki.

"Jos x on isompi kuin y ja y on isompi kuin z, niin x on isompi kuin z."

$C_d = \text{"c on isompi kuin d"}$, $D_e = \text{"d on isompi kuin e"}$, ""

$C_d \land D_e \rightarrow C_e \land (C_c \land E_d \rightarrow C_d) \land (D_e \land E_c \rightarrow D_e) \land "$

Esimerkki. Alla on kuvattu joitain henkilöiden välisiä suhteita.

© 2004 TKK / Tietojenkäsittelyteorian laboratorio
1.2 Predikaattilogiikan aakkosto

Predikaattilogiikan kielessä L käytetään seuraavia symboleja:
- Muuttujasymbolit $\mathcal{V} = \{x, y, z, \ldots\}$
- Vakiosymbolit $\mathcal{C} = \{a, b, c, \ldots\}$
- Funktionsymbolit $\mathcal{F} = \{f, g, h, \ldots\}$
- Predikaattisymbolit $\mathcal{P} = \{P, Q, R, \ldots\}$
- Lauseologian konnektiit $\neg, \land, \lor, \rightarrow, \leftrightarrow$
- Kvanttorisymbolit \exists, \forall
- Sulut () ja pilku ,

1.3 Kielen määritelmä

Predikaattilogiikan kielen L määritelmä on kolmitasoinen: ensin määritellään termit, sitten atomikaavat ja lopulta varsinaiset kaavat.

Määritelmä.
1. Jokainen muuttujasymboli $v \in \mathcal{V}$ on termi.
2. Jokainen vakiosymboli $c \in \mathcal{C}$ on termi.
3. Jos $f \in \mathcal{F}$ on n-paikainen funktionsymboli ja t_1, \ldots, t_n ovat termejä, niin myös $f(t_1, \ldots, t_n)$ on termi.
4. Muita termejä ei ole.

Esimerkki. x, c, $f(x)$, $g(f(f(f(x))))$, $g(f(x), g(f(x), g(x, c)))$.

Määritelmä. Termi, jossa ei esinny muuttujia, on muuttujaton termi (engl. ground term).
Määritelmä.

1. Jokainen atomikävenä φ on kaava.

2. Jos φ ja ψ ovat kaavoja ja x on muuttuja, niin myös

 (¬φ), (φ ∨ ψ), (φ ∧ ψ), (φ → ψ), (φ ↔ ψ), (∀xφ), (∃xφ)

 ovat kaavoja.

3. Muita kaavoja ei ole.

Esimerkki. Predikaattilogian kaavoja: P(c), (∀x(P(x) → Q(x))),

(∀x(P(x) ∨ (∃yQ(x,y)))), (∃x∀y(∀zP(x,y,z))).

Symbolijoukkoihin Ψ, C, F ja P perustava predikaattilogian kielik määrittelee edellä annetuilla periaatteilla muodostettavissa olevien kaavojen joukkona.

Kaavojen jäsennyspuut

Predikaattilogian kaavojilla on yksikäsitteinen jäsennyspuu.

Kaava ∀x(P(x) → Q(f(x,c)))

jäsennyspuu on annettu oikealla,

Kayserinen kaava on muodoltaan universalisti kvantifiointi kaava.

Huomio. Jäsennyspuun juuressa oleva konnektiivi määrittää edelleen, mitä muoto lause on, Esimerkiksi ∃xP(x) → ∀xP(x) on muodoltaan implikaatio, kun taas ∃x(P(x) → ∀xQ(y)) on muodoltaan existenceaalisesti kvantifiointi kaava.

Sopimukset sulkeiden käytöstä

- Konnektiivien presedenssiluokat ovat seuraavat:

 1. ¬, ∀v ja ∃v (missä v ∈ Ψ) ovat vahvimmat konnektiivit,

 2. ∨ ja ∧ ovat nältä heikompia, mutta vahvempia kuin → ja ↔,

 3. → ja ↔ ovat heikoimmat konnektiivit.

- Lauseologian yhteydessä käytettävät periaatteet sulkeiden vähentämiseksi käytettäen myös kaavoja kirjoitettaessa.

Esimerkki. Tätä kaava

(∃x∀y(∃z(P(x,z) ∧ P(z,y)))) → ((Q(x) ∨ Q(y)) ∨ R(x,y)))

voidaan kirjoittaa selkeämmin

∃x∀y(∃z(P(x,z) ∧ P(z,y)) → Q(x) ∨ Q(y) ∨ R(x,y)).

1.4 Kvanttoireihin liittyviä määritteleitä

Kaavan alkaavat määrittelevät seuraavasti:

- Atomisen kaavan ψ ainoa alkaava on ψ itse.

- Kaavan ∃ψ (₉ψψ) alkaavat ovat ∃ψ (₉ψψ) ja ψ:n alkaavat.

- Lauseologian konnektiivit (¬, →, ↔, ∨, ∧) käsitellään vastaavalla tavalla (vrt. alilausoiden määritelmä lauseologian tapauksessa).

Esimerkki. Kaava φ = ∃x(A(x) ∧ ∃y(S(x) ∩ N(x))) alkaavat ovat

φ, ∃x(A(x), ∃y(S(x) ∩ N(x)), A(x), S(x) ∧ N(x), S(x) ja N(x).
Vapaat ja sidotut muuttujat kaavassa

Määritelmä. Olkoot $\exists x \psi$ ja $\forall x \exists y$ predikaattilogiikan kaavojia. Alikäävä ψ on kvanttorin $\exists x$ vaikutusalue kaavassa $\exists x \psi$. Vastaavasti alikaava ϕ on kvanttorin $\forall x$ vaikutusalue kaavassa $\forall x \phi$.

Esimerkki.

$\forall x \exists y (P(x) \rightarrow \exists y Q(x,y))$

$\exists x \exists y (Q(x) \leftrightarrow \forall z P(x,z)) \forall x \exists y R(x)$

Muuttujattoman termi sijoittaminen kaavaan

Määritelmä. Olkoon $\phi(x)$ kaava, jossa muuttuja x mahdollisesti esiintyy vapaana ja t muuttujattoman termi. Kaavalla $\phi(t)$ tarkoitetaan kaavaa $\phi(x)$, jossa jokainen muuttujan x vapaara esiintymä on korvattu termillä t.

Esimerkki.
1. Olkoon $\phi(x) = \exists x (P(x,y) \land Q(x,y))$.
 - Sijoittamalla muuttujattomat termit c ja $f(f(d))$ kaavaan $\phi(y)$ saadaan $\phi(c) = \exists x (P(x,c) \land Q(x,c))$ ja

 $\phi(f(f(d))) = \exists x (P(x,f(f(d))) \land Q(f(f(d)),x))$.

2. Olkoon $\psi(x) = \exists x P(x) \land Q(x)$.
 - Sijoittamalla vakio c saadaan $\psi(c) = \exists x P(x) \land Q(c)$.

1.5 Lauseiden muodostaminen

1. Tunnistetaan kuvattavaa järjestelmään liittyvät objektit:
 - Oteka käyttöön vakiomäärittelyä jotka seuraavat käytössä.
 - Määritelmiä, joiden ohella oletettavaa lähettää oletettiin käytettävissä.

2. Tarkista, että suurin lauseen välissä on ja oletka käyttöön antaa käytettävissä.
Esimerkki. Olkoon t = ”tuoli”, h = ”hattu”, s = ”sateenvarjo” vakiointa ja $P(x, y) = "x$ on y:n päällä,€ ”kaksipaikainen predikaatti. Tällöin:

$P(s, t) =$ ”sateenvarjo ei ole tuolin päällä”.

$\exists xP(x, h) =$

”on olemassa x, joka on hatun päällä”,
ei ”hatun päällä on jotakin”.

$\exists x\forall y\neg P(y, x) =$

”on olemassa x siten, että mikään y ei ole $x:n$ päällä”,
ei ”jonkin päällä ei ole mitään”.

$\forall x(P(x, h) \rightarrow P(x, t)) =$

”kaikille x: jos x on hatun päällä, niin x on tuolin päällä”,
ei ”Kaikki hatun päällä olevat ovat tuolin päällä”.

Esimerkki. Funktiosymbolit tarjoavat tavan esittää induktiivisia tietorakenteita termien avulla,

1. Luonnolliset luvut: vakiobsymboli 0 ja funktiosymboli $s \in F_1$,
 • Termit $0, s(0), s(s(0)), \ldots$ vastaavat luonnollisia lukujen 0, 1, 2, ...
2. Listat: vakiobsymbol e (tyhjä lista) ja funktiosymbol $c \in F_2$,
 • Termit $e, c(a, e), c(a, c(b, e)), \ldots$ vastaavat listojen [...] $[a], [a, b], \ldots$
3. Binääripuitut: funktiosymbol $l \in F_1$ (lehtisoluut) ja $t \in F_2$
 (sisäsolmut),
 • Termit $l(a), l(l(a), l(b)), l(l(a), l(l(b), l(c))), \ldots$ vastaavat puitua

Esimerkki. Kuvataan henkilöiden vallitse suhtetta predikaattilogikalla,

$N(e) \rightarrow A(c, c)$

$\exists x\forall y(Y(x, y) \land Y(y, x))$

$\exists x\forall y(S(x) \land S(y) \land V(x, y))$

$\exists xA(x, c) \land \exists x(S(x) \land N(x))$

$\forall x(S(x) \rightarrow N(x))$

$\forall x(Y(x, c) \rightarrow V(a, x))$

Esimerkki. Esitettänyt binääripuitut kuten edellä funktiosymbolien l ja t
avoilla, kirjoitetaan määritelmä seuraavalla predikaattille:

$P(x, y) =$ ”binääripuu x on binääripuun y pelikuva”.

Koska binääripuitut muodostavat induktiivisen tietorakenteen, on
luontevaa, että predikaattille $P(x, y)$ joudutaan kirjoittamaan
induktiiivinen/rekursiivinen määritelmä seuraavalla tavalla:

• Perustepaus (pelkästä lehtisolmusta koostuvat binääripuitut):
 $\forall x(P(l(x), l(x))).$

• Induktiiviesi (monimitkaesemmat binääripuitut):
 $\forall x\forall y\forall v(P(x, y) \land P(z, v) \rightarrow P(t(x, z), t(y, v))).$

⇒ Määritelmä kattaa kaikki binääripuitut.
2 Predikaattilogiikan semantikka

- Struktuurit
- Predikaattilogiikan totuusmääritelmä
- Semanttiset peruskäsitteet
- Vastamallit
- Peruskäsitteiden väliset yhteydet

Huomioita.
- Joukon $U^n = \overbrace{U \times \cdots \times U}^{n \text{ kpl}}$ alkiot ovat monikkoja (tai jonoja) $\langle a_1, \ldots, a_n \rangle$, missä alkiot $a_1 \in U, \ldots, a_n \in U$.
- Erikoistapaukset: $U^1 = U$ ja $U^0 = \{\langle \rangle\}$, missä $\langle \rangle$ on tyhjä jono.
- Kvanttoreilla $\exists v$ ja $\forall v$ tullaan jatkossa viittaamaan universumin eri alkiointiin. Muuttujan v arvon valitminen struktuurissa S tapahtuu seuraavalla tavalla,

Määritelmä. Struktuurilla $S[v \mapsto a]$ tarkoittaa struktuuria S', joka on muuten sama kuin S, mutta muuttujasymbolin $v \in V'$ tulkintana v^S onkin annettu alkio $a \in U$ (alkion v^S asemesta).

2.1 Struktuurit

Predikaattilogiikassa toisuusjakalet korvataan struktuureilla,

Määritelmä. Struktuuri (rakenne) S kielelle L koostuu
- universumista U, joka on jokin ei-tyhjä joukko, sekä
- vakio-, muuttuja-, funktio- ja predikaattisymbolien tulkinnoota:
 1. Vakiosymbolin $c \in L$ tulkintana on alkio $c^S \in U$.
 2. Muuttujasymbolin $v \in V'$ tulkintana on alkio $v^S \in U$.
 3. Funktiosymbolin $f \in F_n$ tulkintana on funktio $f^S : U^n \rightarrow U$.
 4. Predikaattisymbolin $P \in P_n$ tulkintana on relatio $P^S \subseteq U^n$.

Struktuuri voidaan edelleen ymmärtää yhden asiointilain kuvauskensa,

Esimerkki.

- Helsinki$^S = \{he, tu, ha, be, lo\}$
- Tukholma$^S = \{tu\}$
- Berliini$^S = \{be\}$
- Lontoo$^S = \{lo\}$
- Paikkaapunkti$^S = \{he, tu, ha, be, lo\} \subseteq U^1 = U$
- Lento$^S = \{\langle he, tu, ha, be, lo \rangle, \langle tu, ha, be, lo \rangle, \langle ha, be, lo \rangle \} \subseteq U^2$
2.2 Pedikaattilogiikan totuusmäärittelmä

Termien tulkinta struktuurissa

Määrittelmä. Olkoon S struktuuri kielelle L ja U struktuurin S universumi.

- Vakio $c \in C$ nimeää universumin U alkion c^S.
- Muuttuja $v \in V$ nimeää universumin U alkion v^S.
- Jos termi t_1, \ldots, t_n nimevät universumin U alkiot t_1^S, \ldots, t_n^S ja $f \in F_n$ niin termi $f(t_1, \ldots, t_n)$ nimeää universumin U alkion $f^S(t_1^S, \ldots, t_n^S)$.

Näin voimme viittata kielen L termeillä universumin U alkioihin (kunhan vakio-, muuttuja- ja funktiosymbolien tulkinnat on annettu).

Esimerkki. Tarkastellaan vakiosymbolia $c \in C$ ja funktiosymbolia $f \in F_2$ ja $g \in F_1$. Olkoon struktuurin S universumin U luonnollisten lukujen joukko $0, 1, 2, \ldots$. Valitakem, symbolien tulkinnat seuraavasti:

- $c^S = 0$.
- $f^S = \seuraaja$, eli $f^S(n) = n + 1$, ja
- $g^S = \summa$, eli $g^S(n, m) = n + m$.

Tällöin c nimeää alkion 0,

$\begin{align*}
 f(c) & \text{ nimeää alkion 1,} \\
 f^n(c) & = f(f(\ldots f(c)\ldots)) \text{ nimeää alkion } n \text{ ja } n \text{ kpl} \\
 g(f(c), f(f(c))) & \text{ nimeää alkion 3.}
\end{align*}$

Kaavojen totuusarvojen laskeminen struktuurissa

Olkoon S struktuuri kielelle L ja U struktuurin S universumi.

Määrittelmä. Seurauksina määrittelmän, milloin kaava $\phi \in L$ on toti struktuurissa S (merk. $S \models \phi$) ja milloin epätoti (merk. $S \not\models \phi$).

1. $S \models t_1 = t_2 \iff t_1^S$ ja t_2^S ovat sama universumin U alkio (yllä t_1 ja t_2 ovat mitä tahansa termiä),

2. $S \models P(t_1, \ldots, t_n) \iff$

\[
\langle t_1, \ldots, t_n \rangle^S \text{ (eli jono } \langle t_1^S, \ldots, t_n^S \rangle \text{) kuuluu tulkintaan } P^S
\]

(yllä $n > 0$, $P \in F_n$ ja t_1, \ldots, t_n ovat mitä tahansa termiä),

3. $S \not\models P \iff$ tyhjä jono () kuuluu tulkintaan P^S (missä $P \in F_0$),

4. $S \models \neg \alpha \iff S \not\models \alpha$,

5. $S \models \alpha \land \beta \iff S \models \alpha$ ja $S \models \beta$.

6. $S \models \alpha \lor \beta \iff S \models \alpha$ tai $S \models \beta$.

7. $S \models \alpha \rightarrow \beta \iff S \not\models \alpha$ tai $S \models \beta$.

8. $S \not\models \alpha \leftrightarrow \beta \iff$ joko $S \models \alpha$ ja $S \models \beta$, tai $S \not\models \alpha$ ja $S \not\models \beta$.

9. $S \models \exists x \alpha(x) \iff$

\[
S[x \mapsto a] \models \alpha(x) \text{ jollekin universumin } U \text{ alkiolle } a \in U.
\]

10. $S \models \forall x \alpha(x) \iff$

\[
S[x \mapsto a] \models \alpha(x) \text{ kaikille universumin } U \text{ alkiolle } a \in U.
\]

Väite. Kaaville kaavioille $\phi \in L$ pätee joko $S \models \phi$ tai $S \not\models \phi$.

Väite. Jos kaava $\phi \in L$ on lisäksi lause, sen totuusarvo ei riipu muuttujien $v \in V$ tulkinnosta struktuurissa S.

© 2004 TKK / Tietojenäyttelyteorian laboratorio
Esimerkki. Tarkastellaan graafin sähmujen joukkoa (universumi) ja esitetään kaaret kaksipaikaisen predikaatin K avulla. Nyt esim. graafia

$$
\begin{array}{c}
s_0 \\
\downarrow
\end{array}
\begin{array}{c}
s_1 \\
\downarrow
\end{array}
\begin{array}{c}
s_2
\end{array}
$$

vasta struktuuri S, jonka universumi on $U = \{s_0, s_1, s_2\}$ ja K-n tulkinta

$$K^S = \{\langle s_0, s_1 \rangle, \langle s_1, s_2 \rangle, \langle s_2, s_2 \rangle\}$$

(muuttujat x ja y tulkitaan vapaasti).

1. $\langle s_0, s_1 \rangle \in K^S$
 \implies $\langle x, y \rangle \in K^{s_0+s_1}
 \implies S[x \mapsto s_0, y \mapsto s_1] = K(x, y)$
 $\implies S[x \mapsto s_0] = \exists y K(x, y)$

2. Vastaavasti $\langle s_1, s_2 \rangle \in K^S$
 $\implies S[x \mapsto s_1] = \exists y K(x, y)$

3. Vastaavasti $\langle s_2, s_2 \rangle \in K^S$
 $\implies S[x \mapsto s_2] = \exists y K(x, y)$

Esimerkki. (jatkoka)

4. Koska $S[x \mapsto s_1] = \exists y K(x, y)$ jokaiselle universumin alkioille $s_1 \in U$, voimme todeta, että $S = \forall x \exists y K(x, y)$.

5. Lisäksi esim.

 $$\langle s_2, s_2 \rangle \in K^S$$
 \implies $\langle x, x \rangle \in K^{s_2+s_2}$
 $\implies S[x \mapsto s_2] = K(x, x)$
 $\implies S[x \mapsto s_2] \models \neg K(x, x)$
 $\implies S \models \forall x \neg K(x, x)$
 $\implies S \models \neg \forall x K(x, x)$

Mieti millaisia graafin ominaisuuksia lauseet $\forall x \exists y K(x, y)$ ja $\neg \forall x K(x, x)$ itse asiassa tarkoittavat!

2.3 Semanttiset peruskäsitteet

- Semanttisten peruskäsitteiden määritelmät ovat muodoltaan samat.
- Olennaisena erona lauseologiakan on, että lauseiden rakenne on monipuolisempi ja että struktuurit korvavat totuusjälkeen.

Määritelmä. Struktuuri S on lauseen $\alpha \in L_{mali}$, jos lause α on toisi struktuurissa S eli $S \models \alpha$.

Määritelmä. Struktuuri S on lausejoukon $\Sigma \subseteq L_{mali}$, jos kaikille lausejoukon Σ lauseille $\sigma \in \Sigma$ pätee $S \models \sigma$.
Määritelmä. Lause $\alpha \in \mathcal{L}$ (tai lausejoukko $\Sigma \subseteq \mathcal{L}$) on **toteutuva**, jos ainakin yksi struktuuri S on sen malli.

Esimerkki. $\exists x \forall y P(x,y)$ on toteutuva,
Olkoen struktuurin S universumi $U = \{1,2\}$ ja $P^S = \{(1,1),(1,2)\}$.

1. $(1,1) \in P^S$ \implies $(x,y)_{\sigma = 1, \sigma = 1} \in P(x,y).
\implies S[x \mapsto 1, y \mapsto 1] \models P(x,y)$.
2. $(1,2) \in P^S$ \implies $(x,y)_{\sigma = 1, \sigma = 2} \in P(x,y).
\implies S[x \mapsto 1, y \mapsto 2] \models P(x,y)$.
3. Sis $S[x \mapsto 1] \models \forall y P(x,y)$ ja $S \models \exists x \forall y P(x,y)$.

© 2004 TKK / Tietojenkäsittelyteorian laboratorio

Määritelmä. Kielen \mathcal{L} lause α on **pätevä** (merkittäin $\models \alpha$), jos $S \models \alpha$ kaikissa \mathcal{L}:n struktuureissa S.

Esimerkki. Osoitetaan $\models \forall x P(x) \leftrightarrow \neg \exists x \neg P(x)$.
Kaikille kielen \mathcal{L} struktuureille S ja vastaaville universumille U pätee:

$\models \forall x P(x)$
\iff $S[x \mapsto a] \models P(x)$ kaikille $a \in U$
\iff ei ole niin, että $S[x \mapsto a] \not\models P(x)$ jollekin $a \in U$
\iff ei ole niin, että $S[x \mapsto a] \models \neg P(x)$ jollekin $a \in U$
\iff $S \not\models \exists x \neg P(x)$
\iff $S \models \neg \exists x \neg P(x)$.

Siis $S \models \forall x P(x) \leftrightarrow \neg \exists x \neg P(x)$ struktuurista S riippumatta.

© 2004 TKK / Tietojenkäsittelyteorian laboratorio

2.4 **Vastamallit**

Vastamallin käsittää käytetään myös predikaattilogiikan tapauksessa.
Olkoon $\phi \in \mathcal{L}$ mikä tahansa lause ja $\Sigma \subseteq \mathcal{L}$ mikä tahansa lausejoukko,
- Jos $\not\models \phi$, niin vastamall on struktuuri S siten, että $S \not\models \phi$.
- Jos $\Sigma \models \phi$, niin vastamall on struktuuri S siten, että $S \models \Sigma$ ja $S \models \phi$.

Esimerkki. $\{\forall x (A(x) \rightarrow B(x)), \forall y (A(y) \vee \forall y \neg A(y))\} \not\models \forall z B(z) \vee \forall z \neg B(z)$, koska voimme muodostaa esim. seuraavan vastamallin (struktuurin) S:

$U = \{1,2\}$, $A^S = \emptyset$, ja $B^S = \{1\}$.
Tätä $S \models \forall x (A(x) \rightarrow B(x))$, $S \models \forall y \neg A(y)$, $S \models \forall y A(y) \vee \forall y \neg A(y)$,
$S \not\models \forall z B(z)$, $S \not\models \forall z \neg B(z)$ ja edelleen $S \not\models \forall z B(z) \vee \forall z \neg B(z)$.
(Muuttujien x, y ja z tulkinnat voikaan valita vaapasti struktuurissa S).
Esimerkki. Luokitellaan viikonpäiviä seuraavalla lausejoukolla:

$$\Sigma = \{ \text{tiistai}, \ \text{keskiviikko}, \ \text{luento} \}$$

Onko $$\Sigma \models \text{vapaa(perjantai)}$$? Ei, koska löytyy vastamalli $$\mathcal{S}$$, jonka perusteellä $$\Sigma \not\models \text{vapaa(perjantai)}$$ eli $$\mathcal{S} \models \Sigma$$ ja $$\mathcal{S} \not\models \text{vapaa(perjantai)}$$!

Olko universumi $$U = \{ t, k, p \}$$ ja symbolien tulkinnat seuraavat:

\[
\begin{align*}
\text{tiistai}^S & = t, \\
\text{keskiviikko}^S & = k, \\
\text{perjantai}^S & = p, \\
\text{luento}^S & = \{ k, p \},
\end{align*}
\]

Mutta: $$\Sigma \cup \{ \neg\text{tiistai}, \neg\text{luento(perjantai)} \} \models \text{vapaa(perjantai)}$$.

2.5 Peruskäsitteiden väliset yhteydet

Seuraavat ominaisuudet ovat voimassa myös predikaattilogiassa:

- $$\models \alpha \iff \neg \models \alpha$$ on toteutumaton.
- $$\models \alpha \iff \Sigma \cup \{ \neg \alpha \}$$ on toteutumaton.
- $$\models \alpha \iff \emptyset \models \alpha$$
- $$\{ \alpha_1, \ldots, \alpha_n \} \models \alpha \iff \models \alpha_1 \land \cdots \land \alpha_n \rightarrow \alpha$$.

Olko $$C_n(\Sigma) = \{ \phi \in \mathcal{L} \mid \phi \text{ on lause ja } \Sigma \models \phi \}$$ lausejoukolle $$\Sigma \subseteq \mathcal{L}$$:

- $$\Sigma \subseteq C_n(\Sigma)$$ ja $$\Sigma \equiv C_n(\Sigma)$$.
- Monotonisuus: $$\Sigma_1 \subseteq \Sigma_2 \implies C_n(\Sigma_1) \subseteq C_n(\Sigma_2)$$.
- $$C_n(C_n(\Sigma)) = C_n(\Sigma)$$.

3 Normaaliimuodot

- Prenex-normaaliimuoto
- Konjunktivinen normaaliimuoto
- Eksistenssikvanttorien eliminointi
- Lauseiden klausulimuoto predikaattilogiassa

3.1 Prenex-normaaliimuoto

Lause $$\alpha$$ on prenex normaaliimuodossa, mikäli se on muotoa

$$Q_1 x_1 Q_2 x_2 \cdots Q_n x_n \phi,$$

missä jokainen $$Q_i$$ on jompikumpi kvanttoreista ($$\forall$$ tai $$\exists$$) ja alikaava $$\phi$$ ei sisällä kvanttoreita.

Esimerkki. Seuraavat lauseet ovat prenex-normaaliimuodossa:

$$P(a), \forall x P(x), \forall x \exists y P(x, y)$$ ja
$$\forall x \exists y \forall z \forall w (P(x, y, z) \rightarrow (Q(y, z, w) \rightarrow R(z, w, x))).$$

Välite. Jokainen predikaattilogiakan lause on logiisesti ekvivalentti jonkin prenex-normaaliimuodossa olevan lauseen kanssa.
Lauseiden muuttaminen prenex-normaalimuotoon

Mikä tahansa predikaattilogian lause voidaan muuttaa prenex normaalimuotoon seuraavalla menetellyllä:

1. Poistetaan konnektiivit → ja ↔:
 \[\phi \rightarrow \psi \sim -\phi \lor \psi \]
 \[\phi \leftrightarrow \psi \sim (-\phi \lor \psi) \land (\phi \lor -\psi) \]

2. Viedään negaatiot lauserakenteen sisään (atomisten kaavojen eteen):
 \[-\phi \sim \phi \]
 \[-\phi \lor \psi \sim -\phi \land \psi \]
 \[-\phi \land \psi \sim -\phi \lor \psi \]

Yllä \(\forall x \) on mikä tahansa kvanttorien sekkumen.

Esimerkki. Muunnetaan seuraava lause prenex-normaalimuotoon:

\[
\forall x(P(x) \rightarrow \exists z R(z, x)) \rightarrow \exists x Q(x)
\]

\[
\sim -\forall x(P(x) \rightarrow \exists z R(z, x)) \lor \exists x Q(x)
\]

\[
\sim -\exists z\neg R(z, x) \lor \exists x Q(x)
\]

\[
\sim \exists x(P(x) \land \forall z \neg R(z, x)) \lor \exists x Q(x)
\]

\[
\sim \exists x(P(x) \land \forall z \neg R(z, x)) \lor Q(x)
\]

\[
\sim \exists x(P(x) \land \forall z \neg R(z, x)) \lor Q(x)
\]

\[
\sim \exists x(P(x) \land \forall z \neg R(z, x)) \lor Q(x)
\]

\[
\sim \exists x(P(x) \land \forall z \neg R(z, x)) \lor Q(x)
\]

3. Tuodaan kvanttorit ulos lauserakenteesta:

\[
\forall x(\forall y(\psi(y) \lor \psi)) \sim \forall x \forall z(\phi(z) \lor \psi)
\]

\[
\forall x(\forall y(\psi(y) \land \psi)) \sim \forall x \forall z(\phi(z) \land \psi)
\]

\[
\forall x(\psi(y) \lor \forall y(\psi(y))) \sim \forall x \forall z(\psi(y) \lor \phi(z))
\]

\[
\forall x(\psi(y) \land \forall y(\psi(y))) \sim \forall x \forall z(\psi(y) \land \phi(z))
\]

Yllä \(\forall y \) korvataan uudella muuttujalla \(z \), mikäli \(y \) esiintyy vapaana alikaavassa \(\psi \). Muussa tapauksessa \(x \) voi olla kyseinen eli. \(z \)

Eksistenssikvanttorit \(\exists y \) käsitetään samaan tapaan (saadaan 4 vastaavanmuotoista sääntöjä lisäämällä).

Esimerkki. Muuttujan korvaaminen uudella on olemassa:

\[
\forall x P(x) \lor \exists x Q(x) \sim \forall x (P(x) \lor \exists x Q(x)) \sim \forall y (P(y) \lor Q(y)).
\]

3.2 Konjunktiivinen normaalimuoto

Määritelmä. \(\text{Literaali} \) ovat joko

1. atomiakaavojen \(P(\overline{t}) \) (eli \(\text{positiivisaa literaalaa} \)) tai

2. atomiakaavojen negaatioita \(\neg P(\overline{t}) \) (eli \(\text{negatiivisaa literaalaa} \)).

Yllä \(\overline{t} \) tarkoittaa termien \(t_1, \ldots, t_n \) sekkuvien kun \(P \in \mathcal{T} \), jos \(P \in \mathcal{T} \), sekkuvien on tyhjä ja tällöin myös sulkujen sisällön kirjoittamatta näkyvän.

Määritelmä. Lause \(\alpha \) on konjunktiivisessa normaalimuodossa, mikäli se on

1. prenex-normaalimuodossa \(\forall x_1 \exists x_2 \ldots \exists x_n \phi \), missä kvanttoreita sisältämätön osa \(\phi = \phi_1 \land \cdots \land \phi_n \) ja jokainen konjunktion jäsen \(\phi_i \) on

Esimerkki. Seuraava lause on konjunktiivisessa normaalimuodossa:

\[
\forall x \exists y \forall z ((-P(x, y) \lor Q(y, x)) \land R(z) \land (-R(x) \lor P(y, z) \lor Q(x, z))).
\]
3.3 Eksistenssinkvanttorien eliminointi

Esimerki. Tarkastellaan kahta kokonaissatuksia:

1. Summafunktioilla on yleisimpiä:
 \[\exists x \forall y(x + y = y). \]
 Identiteettialkio voikaa nimetä vakiomuodolla 0:
 \[\forall y(0 + y = y). \]
2. Jokaista kokonaissatuksia on vastaluku:
 \[\forall x \exists y(x + y = 0), \]
 Vastalukufunktio voidaan nimetä funktiosymbolilla \(-\):
 \[\forall x(x + -x = 0). \]
Skolemoinnin logiset ominaisuudet

Väite. Prenex-normaalimuodon oleva lause \(\varphi \) on toteutuva \(\iff \) lauseen \(\varphi \) skolemoitu muoto \(\varphi' \) on toteutuva.

Huomio. Prenex normaalimuodon olevan lauseen \(\varphi \) skolemoitun muotot \(\varphi' \) ei välttämättä ole logiisesti ekvivalentti lauseen \(\varphi \) kanssa.

Esimerkki. Lause \(\exists x P(x) \) ja sen skolemoitu muoto \(P(c) \).

Nyt \(\models P(c) \to \exists x P(x) \), mutta \(\not \models \exists x P(x) \to P(c) \).

Vastamalli \(S \): universumi \(U = \{1,2\} \), \(e^S = 1 \) ja \(P^S = \{2\} \).

Nyt \(\models \exists x P(x) \), mutta \(S \not \models P(c) \).

Tätä myös \(\not \models \exists x P(x) \leftrightarrow P(c) \) ja edelleen \(\exists x P(x) \not \models P(c) \).

3.4 **Lauseiden klausulimuoto predikaattilogiikassa**

Mille tahansa lauseelle voidaan hakea klausulimuoto seuraavasti:

1. Haetaan prenex-normaalimuoto,
3. Tarvittaessa poistetaan eksistensikvanttorit skolemoimalla,

Esimerkki. Klausulitiesys lauseelle \(\forall x (\neg P(x) \to \forall y Q(x,y)) \lor R(x) \):

\[
\begin{align*}
\models & \forall x \exists z ((P(x) \land \neg Q(x,z)) \lor R(x)) \quad (1) \\
\models & \forall x \exists z ((P(x) \lor R(x)) \land (\neg Q(x,z) \lor R(x))) \quad (2) \\
\models & \forall x ((P(x) \lor R(x)) \land (\neg Q(x,f(x)) \lor R(x))) \quad (3) \\
\models & \{P(x) \lor R(x), \{\neg Q(x,f(x)), R(x)\} \}. \quad (4)
\end{align*}
\]

4. **Semanttiset taulut predikaattilogiikalle**

- Taulusäännöt kvanttoideiden käsittelyyn
- Semanttiset taulut predikaattilogiikalle
- Ohjeita taulutodistusten laadintaan
- Systemaattinen taulu
- Vastamallin konstruointi
4.1 Taulusäännöt kvanttorien käsittelyyn

- Muotoa $T \exists \forall \varphi(x)$ (tai $E \exists \forall \varphi(x)$) oleva solmu tulee hajoittaa *kertaallleen* käyttäen jotain (hajoitushetkellä) *uutta vakiota* c.

\[
\begin{array}{c|c}
T \exists \forall \varphi(x) & E \exists \forall \varphi(x) \\
\hline
T \varphi(c) & E \varphi(c) \\
\hline
c \ uusi vakiot & c \ uusi vakiot
\end{array}
\]

- Olkoon P polku (juurisolmusta lehtisolmuun), jolla solmu $T \exists \forall \varphi(x)$ ($E \exists \forall \varphi(x)$) esiintyy ja jota on tarkoitus jatkaa ainoastaan taulusäännöllä. Vakiota c on *uusi*, mikäli se ei esiinny polulla P.

Huomio. Uuden vakiannon johduu siitä, ettemme tiedä, millä universumin alkiolla on ko. ominaisuus φ (tai ei ole ominaisuutta φ).

4.2 Semanttiset taulut predikaattilogikalle

- Semanttisten taulujen määritelmiä säilyy ennallaan.

- Rajaamme yhtäsuuruispredikaatin "=" tarkastelun ulkopuolelle välttääksemme yhtälöiden käsittelyn (vrt. *equality axioms*).

- Ehtoja, millä polun solmu on *hajoittu*, joudutaan täydentämään: Olkoon τ semanttinen taulu ja P polku juurisolmusta lehtisolmuun tassa. P-n solmu $T \exists \forall \varphi(x)$ ($E \exists \forall \varphi(x)$) hajoittuu polulla P, jos

 - polulla P esiintyy $T \varphi(r)$ ($E \varphi(r)$) kaikille muuttujattomille termille t, jotka voidaan muodostaa polulla P esiintyvistä vakoista ja funktiosymboleista (vakiosymboleja on oltava ainakin yksi).

Huomio. Mikäli polulla P ei esiinny vakiosymboleita, $T \exists \forall \varphi(x)$ ($E \exists \forall \varphi(x)$) tulee hajoittaa käyttäen jotain uutta vakiosymbolia c.
Esimerkki. Allaolevan semanttisen taulun kaikki polut ovat valmiit:

1. \(T \forall x(P(x) \rightarrow Q(x)) \)
2. \(E(Q(a) \lor Q(b)) \)
3. \(E\{Q(a) \} \)
4. \(E\{Q(a) \} \)
5. \(T(P(a) \rightarrow Q(a)) \) \(1, x/a \)
6. \(EP(a) \) \(5 \)
7. \(T(P(b) \rightarrow Q(b)) \) \(1, x/b \)
8. \(EP(b) \) \(7 \)

Taulu on ristiriitainen. Lause \(Q(a) \) on siis johdettavissa lausejoukosta \(\{P(a), \forall x(P(x) \rightarrow Q(x))\} \) ja siten myös lausejoukon loginen seurauks.

Esimerkki. Onko \(\{P(a), \forall x(P(x) \rightarrow Q(x))\} \vdash Q(a) \) ?

1. \(T \forall x(P(x) \rightarrow Q(x)) \)
2. \(TP(a) \)
3. \(E\{Q(a) \} \)
4. \(T(P(a) \rightarrow Q(a)) \) \(1, x/a \)
5. \(EP(a) \) \(4 \)
6. \(TQ(a) \) \(4 \)

Taulu on ristiriitainen. Lause \(Q(a) \) on siis johdettavissa lausejoukosta \(\{P(a), \forall x(P(x) \rightarrow Q(x))\} \) ja siten myös lausejoukon loginen seurauks.
4.3 Ohjeita taulutodistusten laadintaan

- Lauseen rakenne määrää edelleen, mitä tauluosiäntöä tulee käyttää (jäsennyspuun juuressa oleva konnektiivi).

- Solmuja hajoittaminen myösannottaa voin vaikuttaa taulun kokoon (haaratumaista kannattaa vältttää).

- Jälkimäsennettä quantorisoimalla termin y tilalle valitaa hajoittamishetkellä (esim. ymehennin) jokin vakio tai funktio- ja vakiosymboleista rakentaa muuttujat tilatiem.

- Valitsena muuttujatotamon termit y sopivasti voidaan usein nopeuttaa taulun valmistumista.

2. Solmu \(\forall x \phi(x) \) (tai \(E \exists x \phi(x) \)) joudutaan hajoittamaan useasti.

Esimerkk. \(\{\forall x \phi(x)\} \vdash P(a) \land P(b) \)

1. \(\forall x \phi(x) \) \hfill 1. \(\forall x \phi(x) \)
2. \(E(P(a) \land P(b)) \hfill E(P(a) \land P(b))
3. \(TP(a)^1, x^a \leftrightarrow \hfill TP(a)^1, x^a \leftrightarrow \)
4. \(TP(b)^1, x^b \leftrightarrow \hfill TP(b)^1, x^b \leftrightarrow \)
5. \(EP(a)^2 \leftrightarrow \hfill EP(a)^2 \leftrightarrow \)
6. \(EP(b)^2 \leftrightarrow \hfill EP(b)^2 \leftrightarrow \)

3. Muuttujen korvaaminen sopivilla muuttujatomilla termeillä.

Esimerkk. \(\{\forall x \forall y \exists z (P(x,y) \land P(y,z) \rightarrow P(x,z)), P(a,b), P(b,c)\} \vdash P(a,c) \)

- Semanttiseen taulun tulee solmu \(\forall x \forall y \exists z (P(x,y) \land P(y,z) \rightarrow P(x,z)) \), josta voidaan johtaa kvanttorisäännöllä 27 erilaista tautoksi merkittyä implikaatioita.

- Ristiriidan johtamisen kannalta dennaasia ovat implikaatioista ne, joissa esiintyy atomisia lauseita \(P(a,b), P(b,c) \) ja \(P(a,c) \).

- Esimerkin tapauksessa tämä johtaa ensimmäiseksi \(x \), y:n ja \(z:n \) korvaamiseen vakioilla \(a, b \) ja \(c \) (näin saatava implikaatio riittää).

- Muita implikaatioita ei tarvita, ja niiden johtaminen ja mahdollinen hajoittaminen johtaa semanttisen taulun tarpeettoman kasvuun.

"Taulutodistusten erityispiirteitä pedikaattilologiikan tapauksessa"

1. Valitaan muuttujatomaksi termiksi y vakio, joka ei esiinny lauseessa.

Esimerkk. Esitettäen \(\{\forall x \phi(x)\} \vdash \exists x \phi(x) \).

1. \(\forall x \phi(x) \) \hfill 2. \(\exists x \phi(x) \)
3. \(TP(c)^1, x^c \leftrightarrow \hfill TP(c)^1, x^c \leftrightarrow \)
4. \(EP(c)^2, x^c \leftrightarrow \hfill EP(c)^2, x^c \leftrightarrow \)

Huomio. Tämä on perusteltua, koska universumissa \(U \) on ainakin vähintään yksi alkio \(a \in U \), joka voidaan nimetä (eli \(c^x = a \)).
Kvanttorisekvenssin käsitteily

Jatkossa sallimme seuraavien johdettujen taulussäintöjen käytön kvanttorisekvenssien käsitteleyssä:

\[
\begin{array}{c|c}
T \forall a \forall y \forall z (P(x, y) \land P(y, z) \rightarrow P(x, z)) \\
2, TP(a, b) \\
3, TP(b, c) \\
4, EP(a, c) \\
5, T \forall a \forall y \forall z (P(a, y) \land P(y, z) \rightarrow P(a, z))^1, x/a \\
6, T \forall z (P(a, b) \land P(b, z) \rightarrow P(a, z))^5, y/b \\
7, T (P(a, b) \land P(b, c) \rightarrow P(a, c))^5, z/c \\
8, E (P(a, b) \lor P(b, c))^7, 8, TP(a, c)^7, \\
9, EP(a, b)^8, 9, EP(b, c)^8, \\
\end{array}
\]

Yllä \(c_1, \ldots, c_n \) ovat \(a \)-, taulussäintöjen edellyttämiä usia vakioida ja vastaavasti \(t_1, \ldots, t_n \) ovat valittuja muistutajottia termejä.

4.4 Systemaattinen taulu

- Lauseologian keskeiset päätelyongelmat ovat ratkeavia.

\textbf{Esimerkki}. Voidaan konstruoida \textit{determinininen} Turing kone \(T \), jonka suoritus pysähtyy syotteeksi annettua lauseologian lauseella \(\varphi \):

1. hyväksymään tilaan \(k \) (kyllä), jos syöte \(\varphi \) on pätevä, ja
2. hyväksymään tilaan \(e \) (ei), jos syöte \(\varphi \) ei ole pätevä.

\textbf{Huomioita}.

- Tällainen algoritmi voi perustua esim. totuusaulukkoihin, semantiiksiin tauluihin tai resoluutioon.
- Myös looginen ekvivalenttisuus, looginen seuraavuus ja toteutuvuus ovat lauseologian tapauksessa ratkeavia ongelmaa.
Esimerkki. Lauseen φ pätevyyden tarkastamista varten voidaan konstruoida seuraavanlainen deterministinen Turing kone T:
1. Jos syöte φ on pätevä, T pysähtyy hyväksyvään tilaan k (kylkä).
2. Jos syöte φ ei ole pätevä, T pysähtyy joskus hylkäävään tilaan e (ei) ja joskus T ei pysähdy lainkaan.

Huomio. Tälläkin algoritmi voi perustua semanttisiin tauluihin:
- Rakentamalla semanttinen taulu tietyställä tavalla systemaattisesti, voidaan taata, että taulu saadaan aina ristiriitaisiksi, kun sen juuressa on Eφ ja φ on pätevä.

Systemaattisen taulun periaatteita
- Tuotetaan indeksoinnalla riittävän määrä uusia vakoitia c1,c2,c3,..., kun hajoitetaan muotoa T\forallψ(x) tai E\existsψ(x) olevia soluja,
- Tuotetaan tarpeen mukaan muuttujattomia termiä t1,t2,t3,..., jotka rakentuvat Eψ:ssä esiintyvistä vakoijaa ja funktiosymboliista sekä mahdollisestä käyttöönotetuista uusista vakoista c1,c2,c3,...
- Sekvenssin t1,t2,t3,... on oltava reilu: jokainen em. symboleista rakentuva muuttujaton termi on esiintynyyn siinä jonakin termin t1.
- Hajoitusten reilut: taataan, että taulun keskeneräisillä poluilla esiintyvät hajoittamattomat solmut tulevat halutussuoroon (seuraavan kerran) äärellisen monen muun hajoituksen jälkeen,
- Muoto T\forallψ(x) tai E\existsψ(x) olevia soluja hajoitetaan järjestysessä käyttäen muuttujattomia termiä t1,t2,t3,...
Esimerki. Käytetään reilua hajoitusjärjestystä:

1. \(T \forall x G(s(x),x) \)
2. \(T \forall x \forall y G(x,y) \rightarrow G(s(x),y) \)
3. \(E G(s(s(0)), s(0)) \)
4. \(T G(s(0),0) \)
5. \(T \forall y (G(0,y) \rightarrow G(s(0),y)) \)
6. \(T G(0,0) \rightarrow G(s(0),0) \)
7. \(E G(0,0) \)
8. \(T G(s(0),s(0)) \)
9. \(T \forall y (G(s(0),y) \rightarrow G(s(0),y)) \)

Systemaattinen taulu voi tehdä turhaa työtä \(\Rightarrow \) heuristikka tarvitaan!

4.5 Vastamallien konstruointi

- Vastamallin (struktuuri) \(S \) konstruoimisessa voidaan hyödyntää semanttisen taulun ristiriidattomasta polusta saatavia \textit{atomisia lauseita} koskevia totuusarvovaatimuksia \(TP(t_1, \ldots, t_n) \), \(EQ(s_1, \ldots, s_m) \), \(\langle t_i \rangle \) ja \(s_j \) ovat muuttujattomia termejä.
- Valtaan riittävän iso universumi \(U \), jotta pystytään antamaan tulkinnat totuusarvovaatimuksissa esintyville vakio- ja funktiosymboleille.
- Tämän jälkeen valitaan predikaattien tulkinnat totuusarvovaatimusten mukaan:
 1. Jos \(TP(t_1, \ldots, t_n) \) on polulla, \(\langle t_1^S, \ldots, t_n^S \rangle \in P^S \).
 2. Jos \(EQ(s_1, \ldots, s_m) \) on polulla, \(\langle s_1^S, \ldots, s_m^S \rangle \notin Q^S \).

Esimerki. Valitsemalla muuttujattomat termit aikaisemmin esitettyllä periaatteilla semanttinen taulu jää huomattavasti pienemmäksi:

1. \(T \forall x G(s(x),x) \)
2. \(T \forall x \forall y (G(x,y) \rightarrow G(s(x),y)) \)
3. \(E G(s(s(0)), s(0)) \)
4. \(T \forall y (G(s(s(0)), s(0)) \rightarrow G(s(s(0)),s(0))) \)
5. \(T G(s(s(0)),s(0)) \rightarrow G(s(s(0)),s(0)) \)
6. \(E G(s(s(0)),s(0)) \)
7. \(T G(s(s(0)),s(0)) \)

Esimerki. Vastamallilla \(S \) lauseen \(\forall x (P(x) \rightarrow Q(x)) \) pätevyydelle:

1. \(E \forall x (P(x) \rightarrow Q(x)) \)
2. \(E (P(c) \rightarrow Q(c)) \)
3. \(T (P(c)) \)
4. \(E (Q(c)) \)

1. Totuusarvovaatimukset ristiriidattomasta polusta: \(TP(c) \) ja \(EQ(c) \).
2. Räätää, että universumiin \(U = \{ 1 \} \) otetaan yksi alkio s.e. \(c^S = 1 \).
3. Totuusarvovaatimusten nojalla: \(1 \in P^S \) ja \(1 \notin Q^S \).
4. Nämä vaatimukset toteutuvat valinnoilla \(P^S = \{ 1 \} \) ja \(Q^S = \emptyset \).
Esimerkki. \(\{ \forall x (P(x) \land Q(x) \rightarrow R(x)) \} \nRightarrow \forall x (Q(x) \rightarrow R(x)) \),

1. \(T \forall x (P(x) \land Q(x) \rightarrow R(x)) \)
2. \(E \forall x (Q(x) \rightarrow R(x)) \)
3. \(E (Q(c) \rightarrow R(c)) \)
4. \(T Q(c) \)
5. \(E R(c) \)
6. \(T (P(c) \land Q(c) \rightarrow R(c)) \)
7. \(E (P(c) \land Q(c)) \)
8. \(E P(c) \)
8. \(E Q(c) \)

Esimerkki. Joskus äärettömästäkin ristiriidattomasta polusta voi onnistua muodostamaan vastamallin, jolla on äärellinen universumi \(U \),

1. \(E \exists x (P(a) \lor P(f(x))) \)
2. \(E (P(a) \lor P(f(a))) \)
3. \(E P(a) \)
4. \(E P(f(a)) \)
5. \(E P(a) \lor P(f(a)) \)
6. \(E P(f(a)) \)
7. \(E P(f(f(a))) \)

Edellytyksenä on muuttujattomien termien tulkinta samalle \(U \)n alkiolle.

Tarkasteillaan taulun ainoa ristiriidatonta polkuja \(P \),
- Polulla esiintyy yksi vakiosymboli \(c \) muttei funktiosymbolia,
- Voidaan muodostaa ainoastaan yksi muuttujaton termi eli \(c \) itse,
- Täten solmu \(T \forall x (P(x) \land Q(x) \rightarrow R(x)) \) on hajoitettu polulla \(P \),
 koska polulla \(P \) on solmu \(T (P(t) \land Q(t) \rightarrow R(t)) \) jokaista muuttujatonta termiä \(t \in \{ c \} \) kohtaan.
- Polku \(P \) on siis valmis,
- Nämä ollen taulu on kokonaisuutena myös valmis,
- Polulta \(P \) saadaan totuusarvavaatimukset \(E P(c) \), \(T Q(c) \) ja \(E R(c) \).
- Muodostetaan vastamallin \(S \) valitsemalla universumiksi \(U = \{ 1 \} \) ja symbolien tulkinnoksi \(c^S = 1 \), \(P^S = R^S = 0 \) ja \(Q^S = \{ 1 \} \).
5 Tietämyksen esittämisestä

• Tietämyksen esittäminen predikaattilogiikalla
• Ohjeita predikaattien määrittelemiseen
• Nimien yksikäsitteisyys ja kattavuus
• Negatiiviset ehdot ja johtopäätökset

5.1 Tietämyksen esittäminen predikaattilogiikalla

Annettuun järjestelmään liittyvää tietämystä voidaan esittää valitsemalla
• sopiva predikaattilogiikan aakkosto (joukot \(P, C \) ja \(f \)) ja
• vastaavan kielen \(L \) perustuva lausejoukko \(\Sigma \subseteq L \), jonka lauseet määrittelevät järjestelmän ominaisuudet.

Tarkastellaan määritelmää vastaavan lausejoukon \(\Sigma \subseteq L \) logisten seurausten joukkoa \(\text{CN}(\Sigma) = \{ \phi \in L \mid \phi \text{ on lause ja } \Sigma \models \phi \} \). Nyt
• \(\Sigma \) muodostaa järjestelmää koskevan eksplisiittisen tietämyksen ja
• joukon \(\text{CN}(\Sigma) \) se lauseet ovat implisiittistä tietämystä eli väittämiä, jotka voidaan päätellä eksplisiittisestä tietämyksestä.

Esimerkki. Kuvataan radioverkon linkkien välityksellä syntyviä yhteyksiä seuraavalla predikaattilogiikan lausejoukolla \(\Sigma \):

\[
\{ \text{linkki}(a,b), \text{linkki}(b,c), \text{linkki}(d,e), \\
\forall x \text{ yhteydy}(x,x), \\
\forall x \forall y (\text{linkki}(x,y) \rightarrow \text{yhteydy}(x,y)), \\
\forall x \forall y (\text{yhteydy}(x,y) \rightarrow \text{yhteydy}(y,x)), \\
\forall x \forall y (\text{yhteydy}(x,y) \land \text{yhteydy}(y,z) \rightarrow \text{yhteydy}(x,z)) \}.
\]

Nyt esim., lause \(\text{linkki}(a,b) \) on eksplisiittistä (ylöskirjattua) tietämystä, kun taas esim., lause \(\text{yhteydy}(c,a) \) lukeutuu lausejoukon \(\Sigma \) logisena seurausena osaksi implisiittistä tietämystä.
Esimerkki. Palauttaa radioverkkoesimerkin lausejoukkoon Σ, jonka osalta voidaan todeella esim, $\Sigma \not\models \text{yhteys}(a, e)$.

- Kirjataan tälle vastamalliksi esim, seuraava struktuuri \mathcal{S}:

Universumi $U = \{1, 2, 3, 4, 5\}$.

Vakioiden tulkinnat: $a^\mathcal{S} = 1$, $b^\mathcal{S} = 2$, $c^\mathcal{S} = 3$, $d^\mathcal{S} = 4$ ja $e^\mathcal{S} = 5$.

- Predikaattien tulkinnat:

 - linkki$^\mathcal{S} = \{(1, 2), (2, 3), (4, 5)\}$ ja

 - yhteys$^\mathcal{S} = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5)\}$

- Esim, lisäämällä lause linkki(d, c) saadaan laajennettu lausejoukko $\Sigma' = \Sigma \cup \{\text{linkki}(d, c)\}$, jolle $\Sigma' \models \text{yhteys}(a, e)$.

- Huomaa, että $\mathcal{S} \not\models \text{linkki}(d, c)$, joten vastamallimme rajautuu pois.

5.2 Ohjeita predikaattien määrittelemiseen

- Tavoitteena kirjoittaa annetulle predikaattille P (ja siten myös sen
 tulkinnan olevalle relaatiolle) määritelmä joidenkin muiden
 predikaattien avulla.

- Mieliivaltainen predikaattilogian kaava ϕ voidaan saattaa muotoon

 $Q_1x_1Q_2x_2\ldots Q_nx_n\psi$

 missä kokin kvanttori Q_i on joko \forall tai \exists, ja kaava ψ on
 konjunktiivisessa normalimuodossa eikä sisällä kvanttoriteita.

- Yllä $\psi = \psi_1 \wedge \ldots \wedge \psi_m$, missä kokin ψ_i on literaalien disjunktio

 $\neg Q_1(\bar{t}_1) \lor \ldots \lor \neg Q_n(\bar{t}_n) \lor P_1(\bar{s}) \lor \ldots \lor P_l(\bar{s})$

 $\equiv Q_1(\bar{t}_1) \wedge \ldots \wedge Q_n(\bar{t}_n) \rightarrow P_1(\bar{s}) \lor \ldots \lor P_l(\bar{s})$.

Määritelmiä tarkkuudesta

- Olkoon H tarkasteltavan predikaattilogian kielen
 muuttujatomen termien joukko.

- Tavoitteemenne on siis kirjoittaa predikaatin $P \in T_H$ määrittelevä
 lausejoukko Σ_P, kun lähtökohtana on tieto predikaatin P
 tarkoittamasta relaatiosta $P^* \subseteq H^n$.

- Määritelmä Σ_P voidaan pitää räätälän tapana, jos kaikille
 muuttujatommille termeille $t \in H$, $\bar{t}_n \in H$ pätee seuraavaa:

 $\langle t_1, \ldots, t_n \rangle \in P^* \iff \Sigma_P \models P(t_1, \ldots, t_n)$.

- Tälläinen positivistinen määritelmä ei ole välttämättä täydellinen eli
 määritelmä ei taka, että $\Sigma_P \models P(t_1, \ldots, t_n)$ mikäli $\langle t_1, \ldots, t_n \rangle \not\in P^*$.
Esimerki. Palataan taas radioverkkoesimerkin lausejoukkoon $\Sigma = \{ \text{linkki}(a, b), \text{linkki}(b, c), \text{linkki}(d, e), $ $\forall x \text{ yhteys}(x,x),$ $\forall x\forall y(\text{linkki}(x,y) \rightarrow \text{yhteys}(x,y)), $ $\forall x\forall y(\text{yhteys}(x,y) \rightarrow \text{yhteys}(y,x)), $ $\forall x\forall y\forall z(\text{yhteys}(x,y) \land \text{yhteys}(y,z) \rightarrow \text{yhteys}(x,z)) \}$.

Määritelmän lähtökohtana on relaatio $\text{linkki}^* = \{(a, b), (b, c), (d, e)\}$. Yhteys-predikaatin määritelmä voidaan pitää riittävän tarkan, koska tavoiteltu relaatio $\text{yhteys}^* = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, d), (d, e), (e, d), (e, e)\}$ saadaan määritelmän Σ loogisena seurauskseen edellä kuvattuella tavalla. Määritelmä ei ole täydellinen, koska esim. $\Sigma \models \neg \text{yhteys}(a,e)$.

Esimerki. Olkoon annettuna predikaatti
1. sairastaa(x) = ”henkilö x on sairaas” ja
2. tapaa(x,y) = ”henkilö x tapaa henkilön y”.

Tarkoituksena on määritellä näiden avulla predikaatti tartuntavaarassa(x) = ”henkilö x on tartuntavaarassa.”
Kysymys: millä ehdolla jonkin henkilön on tartuntavaarassa?
1. Jos henkilö tapaa jonkun sairaan henkilön.
2. Jos henkilö tapaa jonkun toisen tartuntavaarassa olevan henkilön.

Yritetään kirjoittaa nämä edellä esitetyn mukaisesti muotoon
$\forall x \forall y \ldots (Q_1(\vec{i}) \land \ldots \land Q_k(\vec{i}) \rightarrow \text{tartuntavaarassa}(x)).$

Määritelmien käyttö konkreettisessa päätelyssä

Esimerki. Lisätään edellä johdettuun tartuntavaarassa-predikaatin määritelmän tietokanta, jossa kuvataan tapaamiset ja sairastamiset:
Näin saadaan lausejoukko
$\Sigma = \{ \forall x\forall y(\text{tapaa}(x,y) \land \text{sairastaa}(y) \rightarrow \text{tartuntavaarassa}(x)), $ $\forall x\forall y(\text{tapaa}(x,y) \land \text{tartuntavaarassa}(y) \rightarrow \text{tartuntavaarassa}(x)), $ $\forall x\forall y(\text{tapaa}(x,y) \rightarrow \text{tapaa}(y,x)), $ $\text{tapaa}(\text{Lyyli}, \text{Hemmo}), \text{tapaa}(\text{Lyyli}, \text{Erkkii}), \text{sairastaa}(\text{Erkkii}) \}$.

Kysymys asetelmassa saadaan
$\Sigma \models \text{tartuntavaarassa}(\text{Lyyli}) \land \text{tartuntavaarassa}(\text{Hemmo})$.
Kokeile tämän osoittamista semanttisella taululla!
Tyypitettä kvanttoitä

- Usein on mielekästä ajatella universumin koostuvan tyypitään erilaisista alkioista.
- Tällöin syntyy tarve rajata kvantifiointia koskemaan ainoastaan tiettyä tyyppeä T devia alkioita seuraavan tapan:
 \[\forall x \in T : \phi(x) \text{ ja } \exists x \in T : \phi(x). \]
- Tyypit T voidaan esittää yksipäikäisen predikaatin avulla:
 \[T(x) = \text{"alkio } x \text{ on tyyppeä } T\". \]
- Tyypitettä kvanttoitka ilmaistaan predikaattilogikassa seuraavasti:
 \[\forall x(T(x) \to \phi(x)) \text{ ja } \exists x(T(x) \land \phi(x)). \]

Esimerkki. Lisätään edellisen esimerkkiin tyypippedikaatteja.

- Määritellään predikaatit henkilöiden ja tautien erottelemiseksi:
 henkilö(x) = "x on henkilö" ja tauti(x) = "x on tauti".
- Määritellään predikaatit ilman tyyppeinformaatiota:
 - tapaa(x, y) = "x tapaa $y:n",
 - sairastaa(x, y) = "x sairastaa y:tä" ja
 - tartuntavaarassa(x, y) = "x on varassa sairastua y:n".
- Lauseet saadaan nyt seuraavaan muotoon:
 \[\forall x \forall y \forall z (\text{henkilö}(x) \land \text{henkilö}(y) \land \text{tapa}(x, y) \land \text{tauti}(z) \land \text{sairastaa}(x, y) \to \text{tartuntavaarassa}(x, z)) \text{ ja} \]
 \[\forall x \forall y \forall z (\text{henkilö}(x) \land \text{henkilö}(y) \land \text{tapa}(x, y) \land \text{tauti}(z) \land \text{tartuntavaarassa}(y, z) \to \text{tartuntavaarassa}(x, z)). \]

Muodotaan monimutkaisempia määritelmiä

- Edellä otettiin lähtökohtaksi muotoa
 \[\forall x_1 \forall x_2 \cdots \forall x_n (Q_1(\vec{t}) \land \cdots \land Q_k(\vec{t}) \to P(\vec{t})) \]
 olevat määritelmiä. Näiden ilmaisuvuonna ei ole aina riittävä.
- Joissakin tilanteissa tarvitaan eksistentiaalista kvantifiointia:
 \[\forall x (\text{solmu}(x) \to \exists y (\text{väri}(y) \land \text{väristety}(x, y))) \]
 \[\equiv \forall x \exists y (\text{solmu}(x) \to \text{väri}(y) \land \text{väristety}(x, y)). \]
- Implikaation seurauksena voi olla myös atomien disjunktio
 \[P_1(\vec{s}) \lor \cdots \lor P_n(\vec{s}) \] pelkän atomin $P(\vec{t})$ sijaan:
 \[\forall x (\text{bitti}(x) \to \text{nolla}(x) \lor \text{yksi}(x)). \]

Huomio. Edellä oli keskeistä vaihtoehtoisuuden ilmaiseminen,
5.3 Nimien yksikäsitteisyys ja kattavuus

- Rajoitetaan jatkossa pedikaattilogiikan kielin L, jossa ei ole funktiosymboleita ja ainoastaan ääreillä määrrä vakiosymboleita.
- Pedikaattilogiikassa struktuurin S määritelmä ja tapa jolla vakiosymbolit tulkitaan S:ssa mahdollistavat, että
 1. jokin universumin U alkio $a \in U$ on useammien vakiointien \(c_1, \ldots, c_n \)\, ($n > 1$) nimeämä: $c_1^a = \ldots = c_n^a = a$.
 2. jokin universumin U alkio $a \in U$ ei ole minkään vakiointien nimeämä (eli kaikille vakiosymboleille c pätee $c^a \neq a$).
- Tietämyksen esittämisen kannalta tällainen mahdollisuus muodostuu usein jopa turhaksi, mutta:

Nimeämien voidaan pakottaa yksikäsitteiseksi lauseita lisäämällä.

Esimerkki

Tarkastellaan lausejoukon

$$ \Sigma_{UNA} = \{ \neg (\text{Lyyli} = \text{Hemmo}), \neg (\text{Lyyli} = \text{Erkki}), \neg (\text{Hemmo} = \text{Erkki}) \} $$
malleja S_n kun universumina U_t on joukko henkilöitä h_1, h_2, \ldots.

<table>
<thead>
<tr>
<th>U_t</th>
<th>LyyliS</th>
<th>HemmoS</th>
<th>ErkkiS</th>
</tr>
</thead>
<tbody>
<tr>
<td>${ h_1, h_2, h_3 }$</td>
<td>h_1</td>
<td>h_2</td>
<td>h_3</td>
</tr>
<tr>
<td>${ h_1, h_2, h_3 }$</td>
<td>h_1</td>
<td>h_3</td>
<td>h_2</td>
</tr>
<tr>
<td>${ h_1, h_2, h_3 }$</td>
<td>h_2</td>
<td>h_1</td>
<td>h_3</td>
</tr>
<tr>
<td>${ h_1, h_2, h_3 }$</td>
<td>h_3</td>
<td>h_2</td>
<td>h_1</td>
</tr>
<tr>
<td>${ h_1, h_2, h_3, h_4 }$</td>
<td>h_1</td>
<td>h_2</td>
<td>h_3</td>
</tr>
</tbody>
</table>

\implies Universumissa oltaa vähintään 3 henkilöä.

Nimien yksikäsitteisyys

- Vastaava käsite englanniksi on unique names assumption (UNA).
- Kun kielellä on ääreellinen määrrä vakiosymboleita c_1, \ldots, c_n riittää lisätä muotoa

 $$ \neg (c_i = c_j) $$

 olevat lauseet, missä $i \in \{1, \ldots, n\}$, $j \in \{1, \ldots, n\}$ ja $i < j$.
- Lauseita tarvitaan neljällinen määrrä (yhteensä 2^{2^4} kappaletta).

Esimerkki

Olkoon kielellä L vakiosymbolit Lyyli, Hemmo ja Erkki, yksikäsitteisten nimien oletus ilmaistaan seuraavasti:

$$ \neg (\text{Lyyli} = \text{Hemmo}), \neg (\text{Lyyli} = \text{Erkki}) \text{ ja } \neg (\text{Hemmo} = \text{Erkki}). $$

Nimien kattavuus

- Vastaava käsite englanniksi on domain closure assumption (DCA).
- Kun kielellä on ääreellinen määrrä vakiosymboleita c_1, \ldots, c_n riittää lisätä seuraavaa muotoa oleva lause:

 $$ \forall x (c_1 \lor \cdots \lor c_n = x) $$

- Tarvittavat lauseen pituus riippuu lineaarisesti vakiooiden lukumäärästä n.

Esimerkki

Edellisen esimerkkin mukaisessa kielellä tarvitaan lause

$$ \forall x (\text{Lyyli} \lor x = \text{Hemmo} \lor x = \text{Erkki}) $$

© 2004 TKK / Tietojenkäsittelyteorian laboratorio
Esimerkki. Tarkastellaan lausejoukon

\[\Sigma_{\text{DCA}} = \{ \forall x (Lyli x = \text{Hemmo} \lor x = \text{Erkki}) \} \]

malleja \(S \), kun universumina \(U \) on joukko henkilöitä \(h_1, h_2, \ldots \).

\[
\begin{array}{ccc}
U_i & Lyli^i & \text{Hemmo}^i & \text{Erkki}^i \\
\{h_1, h_2, h_3\} & h_1 & h_2 & h_3 \\
\{h_1, h_2, h_3\} & h_1 & h_3 & h_2 \\
\{h_1, h_2, h_3\} & h_2 & h_3 & h_1 \\
\{h_1, h_2, h_3\} & h_3 & h_2 & h_1 \\
\end{array}
\]

\[\implies \text{Universumissa voi olla korkeintaan 3 henkilöä.} \]

Yhtäsuuruuspredikaatin määritelmä

Jos yhtäsuuruuspredikaattia sisältävää lausea käytetään määritelmissä, seuraavat aksiomat saattavat olla tarpeen esim, todistuksissa.

1. **Reflaksivisyys:** \(\forall x (x = x) \).
2. **Symmetrisisyys:** \(\forall x \forall y ((x = y) \rightarrow (y = x)) \).
3. **Transitivisuus:** \(\forall x \forall y \forall z ((x = y) \land (y = z) \rightarrow (x = z)) \).
4. **Sijoittauvuus** (kaikille predikaateille \(P \in \mathcal{P}_a \)):

\[
\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_n \\
(P(x_1, \ldots, x_n) \land (x_1 = y_1) \land \ldots \land (x_n = y_n) \rightarrow P(y_1, \ldots, y_n)).
\]

Osoita \(P(a, (b = a)) \models P(b) \) näiden ja semanttisen taulun avulla!

Esimerkki. Tarkastellaan vielä edeltävien lausejoukkojen unionin

\[\Sigma_{\text{UNA}} \cup \Sigma_{\text{DCA}} = \{ \neg (Lyli = \text{Hemmo}), \neg (Lyli = \text{Erkki}), \\
\neg (\text{Hemmo} = \text{Erkki}), \\
\forall x (Lyli x \lor x = \text{Hemmo} \lor x = \text{Erkki}) \} \]

malleja \(S \), kun universumina \(U \) on joukko henkilöitä \(h_1, h_2, \ldots \).

\[
\begin{array}{ccc}
U_i & Lyli^i & \text{Hemmo}^i & \text{Erkki}^i \\
\{h_1, h_2, h_3\} & h_1 & h_2 & h_3 \\
\{h_1, h_2, h_3\} & h_1 & h_3 & h_2 \\
\{h_1, h_2, h_3\} & h_2 & h_3 & h_1 \\
\{h_1, h_2, h_3\} & h_3 & h_2 & h_1 \\
\end{array}
\]

\[\implies \text{Universumissa on oltava täsmälleen 3 henkilöä.} \]
Määritelmien täydellisyys

Määritelmä. Predikaattien \(P \in \mathcal{P}_n \) määritelmä \(\Sigma \subseteq L \) on täydellinen, jos
\[\Sigma_P \models P(t_1, \ldots, t_n) \text{ tai } \Sigma_P \not\models P(t_1, \ldots, t_n), \]
kaikille kielen \(L \) muuttujattomille termeille \(t_1, \ldots, t_n \).

Huomioita.

• Jos predikaattien \(P \in \mathcal{P}_n \) määritelmä \(\Sigma_P \) on ristiriitainen (eli sillä ei ole malleja), se on trivialisesti täydellinen: tällöin sekä
\[\Sigma_P \models P(t_1, \ldots, t_n) \text{ että } \Sigma_P \not\models P(t_1, \ldots, t_n) \]
kaikille muuttujattomille termeille \(t_1, \ldots, t_n \in L \).

• Jos predikaattien \(P \in \mathcal{P}_n \) määritelmä \(\Sigma_P \) on täydellinen ja
\[\Sigma_P \not\models P(t_1, \ldots, t_n) \]
jollekin muuttujattomille termeille
\(t_1, \ldots, t_n \in H \), niin \(\Sigma_P \) ei ole ristiriitainen ja \(\Sigma_P \not\models P(t_1, \ldots, t_n) \).

Esimerkki. Tarkastellaan muunnelmaa tartuntavaara-keskustelua:
\[\Sigma = \{ \forall x (\text{tapaa}(x, y) \land \text{sairastaa}(y) \rightarrow \text{tartuntavaaraa}(x)) \}, \]
\[\forall x (\neg \text{sairastaa}(x)
\land \neg \text{tartuntavaaraa}(x) \rightarrow \text{turvassa}(x)) \}, \]
\[\text{tapaa}(\text{Lyly, Hemmo}), \text{tapaa}(\text{Lyly, Erkki}), \text{sairastaa}(\text{Erkki}) \}. \]

• Nyt \(\Sigma \models \text{tartuntavaaraa}(\text{Lyly}), \Sigma \not\models \text{tartuntavaaraa}(\text{Hemmo}) \) ja
\(\Sigma \not\models \neg \text{tartuntavaaraa}(\text{Hemmo}) \).

• Täten \(\Sigma \) ei ole täydellinen määritelmä tartuntavaaraa-predikaattien.

• Jotta näin olisi, määritelmästä tulisi seuraaja loogisesti
\(\neg \text{tartuntavaaraa}(\text{Hemmo}) \) ja \(\neg \text{tartuntavaaraa}(\text{Erkki}) \).

• Kyseisen määritelmän \(\Sigma \) ei ole myöskään täydellinen muille ai, kielen predikaateille (tapa, sairastaa, turvassa ja =).
Esimerkki. Tarkastellaan vastaavaa konstruktiota lausejoukolle

\[\Sigma = \{ \text{tuntee1(Lyl), tuntee1(Hemmo, Hemmo),} \]
\[\forall x \forall y (\text{tuntee1}(x, y) \rightarrow \text{tuntee2}(x, y)), \]
\[\forall x \forall y (\text{tuntee2}(y, x) \rightarrow \text{tuntee2}(x, y)) \}. \]

- Rekursiivisesti määritellyn predikaatin tuntee2 taikoituksena on täydentää predikaattijoukon symmetriseksi.
- Täydennettynä määritelmä saadaan muotoon

\[\Sigma' = \{ \neg (\text{Lyl} = \text{Hemmo}), \forall x (x = \text{Lyl} \lor x = \text{Hemmo}), \]
\[\forall x \forall y (\text{tuntee1}(x, y) \leftrightarrow (x = \text{Lyl} \land y = \text{Lyl}) \lor (x = \text{Hemmo} \land y = \text{Hemmo})), \]
\[\forall x \forall y (\text{tuntee2}(x, y) \leftrightarrow \text{tuntee1}(x, y) \lor \text{tuntee2}(x, y)) \}. \]

6 Herbrandin teoreema

- Herbrand-universumit
- Herbrand-struktuurijoukko
- Herbrandin teoreema
- Lause-ja predikaattilogiikan suhteesta

Yllä mainittujen täydennettyistä määrittelemistä ei seuraa logisesti-
\[-\text{tuntee2(Lyl, Hemmo)}\] eikä \[-\text{tuntee2(Hemmo, Lyl)}.\]

Lausejoukolla \(\Sigma' \) on seurava epäintuitiivinen malli \(S \):
Universumiksi \(U = \{ h_1, h_2 \} \),
\(\text{Lyl}^S = h_1 \), \(\text{Hemmo}^S = h_2 \),
\(\text{tuntee1}^S = \{ (h_1, h_1), (h_2, h_2) \} \) ja
\(\text{tuntee2}^S = \{ (h_1, h_1), (h_2, h_1), (h_2, h_2) \} \).

Kyseinen struktuuri \(S \) on vastamalli, koska
\(S \not\models \neg \text{tuntee2(Lyl, Hemmo)} \) ja \(S \not\models \neg \text{tuntee2(Hemmo, Lyl)} \).

Huomio. Tentissä ei edellytetä täydellisen määrittelemien kirjoittamista
predikaatteille (ellei tästä sitten erikseen jossain yksinkertaissessa
tapauksessa pyydetä).

6.1 Herbrand-universumit

Määritelmä. Predikaatit yllä laskeutuneen kielen \(\mathcal{L} \) Herbrand universumi \(H \) on
niiden muuttujapäätösten termien joukko, jotka ovat muodostettavissa
kielen \(\mathcal{L} \) vakiom- ja funktiosymboleista.

Esimerkki. Olkoon kelessä \(\mathcal{L} \) ainoastaan yksi vakiomsymboli \(c \) ja yksi
funktiosymboli \(f \in \mathcal{F}_2 \).
Herbrand universumiksi saadaan muuttujapäätösten termien joukko
\(H = \{ c, f(c, c), f(f(c, c), c), f(c, f(c, c)), f(f(c, c), f(c, c)), \ldots \} \).

Huomio. Jos kelessä \(\mathcal{L} \) ei ole funktiosymboleita ja ainoastaan äärellinen
määri vakiota, Herbrand-universumit \(H \) jää täällön äärelliseksi.
6.2 Herbrand-struktuurit ja -mallit

Määritelmä. Kielen \(\mathcal{L} \) Herbrand-struktuuri on struktuuri \(\mathcal{H} \), jonka
1. universumina on kielen \(\mathcal{L} \) Herbrand-universumit \(H \),
2. jokaisen vakiossymbolin \(c \in C \) tulkintana \(c^{\mathcal{H}} \) on \(c \) itse,
3. jokaisen funktiosymbolin \(f \in \mathcal{F} \) tulkintana on funktio \(f^{\mathcal{H}} \), joka
 kuvaa muuttujatottamen termin \(t_1, \ldots, t_n \) muuttujatottamaksi termiksi
 \(f(t_1, \ldots, t_n) \), ja
4. jokaisen predikaattisymbolin \(P \in \mathcal{P} \) tulkintana on \(P^{\mathcal{H}} \subseteq H \).

Jos lausejoukossa \(\Sigma \) ei esiinny yhtään vakiossymbolia,
Herbrand universumiin valitaan ainakin yksi vakiossymboli \(c \)
(strukturien määritelmän mukaan universumit ovat aina esihja).

Lausejoukon \(\Sigma \) Herbrand-universumista \(H \) on niiden
muuttujatottamien termien \(t \) joukko, jotka ovat muodostettavissa
lausejoukossa \(\Sigma \) esintytä vakiota ja funktiosymboloista.

Esimerkki. Lausejoukon \(\Sigma = \{ \forall x P(x, f(x)) \} \) Herbrand-universumi on
\(H = \{ c, f(c), f(f(c)), \ldots \} = \{ f^n(c) \mid n \geq 0 \} \).

Määritelmä. Kielen \(\mathcal{L} \) Herbrand-struktuuri \(\mathcal{H} \) on
1. lauseen \(\phi \in \mathcal{L} \) Herbrand-malli \(\iff \mathcal{H} \models \phi \), ja
2. lausejoukon \(\Sigma \subseteq \mathcal{L} \) Herbrand-malli \(\iff \mathcal{H} \models \sigma \) kaikille \(\sigma \in \Sigma \).

Esimerkki. Tarkastellaan lausejoukkoa
\(\Sigma = \{ P(a), \forall x (P(x) \rightarrow Q(x)), \forall x (Q(x) \rightarrow Q(f(x)) \land R(x, f(x))) \} \).

Lausejoukon \(\Sigma \) Herbrand-universumina on \(H = \{ f^n(a) \mid n \geq 0 \} \).

Muodostetaan Herbrand-struktuuri \(\mathcal{H} \), jonka universumina on \(H \) siten, että jokainen muuttujatossa termi \(t \in H \) tulkitaan \(t^{\mathcal{H}} = t \), ja
\(P^{\mathcal{H}} = \{ a \}, Q^{\mathcal{H}} = H \) ja \(R^{\mathcal{H}} = \{ (f^n(a), f^{m+1}(a)) \mid n \geq 0 \} \).

Kyseinen struktuuri \(\mathcal{H} \) on lausejoukon \(\Sigma \) Herbrand-malli.
6.3 Herbrandin teoreema

- Rajoitetaan tarkastelemaan klausulijoukkoa.
- Merkintä $C(x_1, \ldots, x_n)$ tarkoittaa muuttujat x_1, \ldots, x_n sisältävää klausulia $\{P_1(\bar{t}), \ldots, P_k(\bar{t}), -Q_1(\bar{s}), \ldots, -Q_l(\bar{r})\}$.
- Kausuull $C(x_1, \ldots, x_n)$ vastaa universaalisti kvantifiointua lausetta $\forall x_1 \cdots \forall x_n \phi(C(x_1, \ldots, x_n))$, missä $\phi(x_1, \ldots, x_n)$ on klausuuli $C(x_1, \ldots, x_n)$ esitys literaalien disjunktioa.
- Klausulijoukkel S voidaan määritellä Herbrand struktuurit samaan tapaan kuin lausejoukkoihin.
- Klausulijoukko S voidaan *instantioida* vastaavan Herbrand-universumin H_S suhteen seuraavasti:

6.4 Lauseologian ja predikaatilogian suhteesta

- Lauseogika on osa predikaatilogiikkaa:
 - Kaikki lauseologian konnektiivit ovat käytettävissä predikaatilogiikassa,
 - 0-paikkaiset predikaatit vastaavat atomisia lauseita.
- Lauseologian päätelmät ja logiset ongelmat voidaan suorittaa/ratkota sellaisena predikaatilogiikan puiteessa.
- Herbrandin teoreeman nojalla predikaatilogian päätely voidaan palauttaa lauseologian päätelyksi.
- Lauseologian ja predikaatilogian *ilmastoinnassa* (eli kysymystä esittää) on kuitenkin huomattava ero.
Ilmaisuvoimaren ilmentymen:
- Áäreltä predikaattilogiikan lausejoukkoa saattaa vastata áäretön lauseologikan lausejoukko,
- Lauseologikan ratkeavuus vs. predikaattilogiikan puoliratkeavuus,

Rajoittamalla syntaksia sopivasti saadaan predikaattilogiikkallekin ratkeavia (ja ilmaisuvoimaaltaa heikompia) osajoukoja,
- Esim. jos S on áärellinen ja siinä ei esinny funktsiosymboleja, sen Herbrand-áinstanssien joukko S' jää áärelliseksi,
- Täällöin S:n toteutuvuus on selvitettyvissä áärellisessä ajassa.

Esimerkk. Klausuulijoukon $\{\{P(a), \neg P(x), P(b)\}\}$
Herbrand-universumi $H = \{a, b\}$ ja Herbrand-áinstanssien joukko $S' = \{\{P(a), \neg P(a), P(b)\}, \{\neg P(b), P(b)\}\}$, joka voidaan nähdä lauseologikan klausuulijoukkaa $S' = \{\{P\}, \{\neg P\}, \{\neg Q\}\}$.

7 Unifikaatio

- Substituutiot
- Yleimimat unifioijat
- Unifikaatiotaidegoritmi

7.1 Substituutiot

Määritelmä. Substituutio (tai korvau) θ on áärellinen joukko

$$\{x_1/t_1, x_2/t_2, \ldots, x_n/t_n\},$$

missä x_i:t ovat muuttujia ja t_i:t korvauvia termejä siten, että
1. korvattavat muuttujat x_1, \ldots, x_n ovat toisistaan eriytä ja
2. mikään korvavaa termi t_i ei de muuttuja x_i itse eli $t_i \neq x_i$.

Liäksi erotetaan seuraavat erikoistapaukset:

- Jos korvaavat termit t_i ovat muuttujattomia, θ on muuttujaton,
- Jos korvaavat termit t_i ovat muuttuja, θ on nimeämissubstituutio.

Esimerkki. Esimerkkeinä todettakoon

- tyhjä substituutio $\varepsilon = \{\}$,
- substituutio $\theta_1 = \{x/y, y/a, z/f(w)\}$,
- muuttujaton substituutio $\theta_2 = \{x/a, y/g(c, c)\}$ ja
- nimeämissubstituutio $\theta_3 = \{x/y, y/z, z/x\}$.

Määritelmä. Olkoon E jokin lauseke (eli termi, atomikäava, literaali, klausuuli tms.) ja $\theta = \{x_1/t_1, \ldots, x_n/t_n\}$ substituutio.

Lauseke $E\theta$ on muuton rakenteeltaan kuten E, paitsi että jokainen muuttujan x_i esimittä lausekeessa E on korvattu termillä t_i.

Jos lausekeessa $E\theta$ ei esiinny muuttuja, kutsutaan lauseet alla E muuttujattomaksi instanssiksi.
7.2 Yleisimmät unifioijat

Määritelmä. Olkoon $S = \{E_1, \ldots, E_n\}$ joukko lausekkeita. Substituutio ϑ on lausekejoukon S unifioija, jos $E_1\vartheta = E_2\vartheta = \ldots = E_n\vartheta$.

Lausekejoukon S on unifioituva, mikäli sillä on ainakin yksi unifioija.

Esimerkki. Tarkastellaan seuraavien joukkojen unifioituuvuutta.

<table>
<thead>
<tr>
<th>Joukko S</th>
<th>Unifioija ϑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>${P(x, f(a)), P(y, z)}$</td>
<td>${x/y, z/f(a)}$ tai ${x/y, z/f(a)}$</td>
</tr>
<tr>
<td>${P(x, f(x)), P(x, f(x))}$</td>
<td>${x/f(x), y/f(f(a))}$</td>
</tr>
<tr>
<td>${P(a), P(f(x))}$</td>
<td>ei unifioija</td>
</tr>
<tr>
<td>${P(x), P(f(x))}$</td>
<td>ei unifioija (termit aina äärellisiä)</td>
</tr>
</tbody>
</table>

7.3 Unifikaatioalgoritmi

- Tavoitteena laskea atomikaavojen joukolle $S \neq \emptyset$ yleisin unifioija σ.

Määritelmä. Olkoon S ei tyhjä joukko johonkin predikaattisymboliin p perustuva atomikaava $\{P(\tilde{r}_1), \ldots, P(\tilde{r}_n)\}$.

1. Joukon S eroakoa on vasemmalla oikealle siirryttäessä ensimmäinen kohta, jossa joukon S atomikaavojen merkkijonoesityksissä on jokin eroavaa.2

2. Joukon S eroajoukko $D(S)$ kuuluvat atomikaavojen $P(\tilde{r}_1), \ldots, P(\tilde{r}_n)$ eroakohdasta halvat termit u_1, \ldots, u_n.

Esimerkki. Joukko $S_1 = \{P(x, a), P(x, y)\}$ eroajoukko $D(S_1) = \{a, y\}$.

Joukko $S_2 = \{Q(g(x, y), y), Q(g(x, f(z)), x), Q(g(x, f(a)), f(a))\}$ eroajoukko $D(S_2) = \{y, f(z), x\}$.
Unikaatioalgoritmi ehdottaa atomikaavojen joukolla S:

1. Jos joukon S atomikaavojen predikaattiymbolit eivät ole samat, totea
 ettei S unifioituja ja lopeta algoritmin suoritus.
2. Aseta $k := 0, S_k := S$ ja $s_k := \varepsilon$.
3. Jos S_k on yksialkioinen (ja siten unifioiutunut) joukko, totea S
 unifioituvaaksi ja lopeta algoritmin suoritus.
4. Laske joukon S_k eroajukko $D(S_k)$.
5. Jos $D(S_k)$:ssa on muuttuja v_k ja termei t_k on, että v_k ei
 esiinny t_k:ssa, jatka algoritmin suoritusta kohdasta 7.
7. Aseta $s_k := v_k/t_k$ ja laske $S_{k+1} := S_k\{v_k/t_k\}$.
8. Aseta $k := k+1$ ja jatka algoritmin suorittamista kohdasta 3.

Välte. Olkoon S ärellinen ehdottaa atomikaavojen.

- Jos S on unifioituva, niin unikaatioalgoritmin suoritus päättyy
 askeleena 3 kohdalla ja substituutioiden s_0, s_1, \ldots, s_k komposikio
 $\sigma = s_0 s_1 \cdots s_k$ on joukon S yleisin unifioija
- Jos S ei ole unifioituva, niin unikaatioalgoritmin laskenta päättyy
 askeleessa 1 tai askeleessa 6.

Esimerkki. Lasketaan unikaatioalgoritmilla joukon
$S = \{P(x, f(x)), P(g(a), z)\}$ yleisin unifioija:

1. Predikaattiymbolit ovat samat, jatkaan.
2. $k = 0, S_0 = \{P(x, f(x)), P(g(a), z)\}, \sigma_0 = \varepsilon$.
3. S_0 ei ole yksialkioinen, jatkaan.

Resoluutiosääntö ja -todistukset

- Resoluutiosääntö predikaattilogian tapauksessa
- Resoluutiotodistukset
- Ohjeita resoluutiotodistusten kirjoittamiseen
- Tukijoukkostategia
8.1 Resoluutiosääntö predikaattilogiikan tapauksessa

Määritelmä. Olkoot

\[C_1 = C'_1 \cup \{P(\bar{t}_1), \ldots, P(\bar{t}_m)\} \quad \text{ja} \quad C_2 = C'_2 \cup \{-P(\bar{u}_1), \ldots, -P(\bar{u}_m)\} \]

kaksi klausuulia,

1. joska ei esiinny yhteisää muuttuja ja
2. joska esiintyvien atomikaavojen joukko

\[\{P(\bar{t}_1), \ldots, P(\bar{t}_m), P(\bar{u}_1), \ldots, P(\bar{u}_m)\} \]

on unifioidua (yleisimpänä unifioidujana \(\sigma \)),

Klausuulien \(C_1 \) ja \(C_2 \) yhdistelmä on klausuli \(C'_1 \sigma \cap C'_2 \sigma \).

Huomio. Yllä käytetty merkkintä \(A \cup B \) tarkoittaa keskenään alkioveraiden \((A \cap B = \emptyset) \) joukkojen \(A \) ja \(B \) unionia \(A \cup B \).

Esimerkki. Tarkasteilla seuraavia klausuleja:

\[C_1 = \{Q(x), -R(y), P(x,y), P(f(z), f(z))\} \quad \text{ja} \quad C_2 = \{-N(u), -R(w), -P(f(a), f(a)), -P(f(w), f(w))\}. \]

Klausuuleissa ei esiinny yhteisää muuttuja ja joukon

\[\{P(x,y), P(f(z), f(z)), P(f(a), f(a)), P(f(w), f(w))\} \]

yleisin unifiointo on \(\sigma = \{x/f(a), y/f(a), z/a, w/a\} \), Klausuulien yhdistelmäksi saadaan \(\{Q(f(a)), -R(f(a)), -N(u), -R(w)\} \).

Esimerkki. (Faktorointi) Klausuulessa voi olla useita eri yhdistelmiä, klausuilenn \(\{P(x_1), P(y_1)\} \) ja \(\{-P(x_2), -P(y_2)\} \) yhdistelmiä ovat mm.

- \(\{P(x_1), -P(x_2)\} \) joukelle \(\{P(y_1), P(y_2)\} \) MGU \(\sigma = \{y_2/y_1\} \)

- tyhjä klausuli \(\square \) joukelle \(\{P(x_1), P(y_1), P(x_2), P(y_2)\} \) MGU

\[\sigma = \{y_1/x_1, x_2/x_1, y_2/x_1\} \].

Esimerkki. Logiikahohdeinissa (PROLOG) laskenta askelet puhutuvat järjestetyn klausuulien väliseen resoluutioon.

Määritelmä. Olkoon \(G = \{-B_1(\bar{u}_1), \ldots, -B_m(\bar{u}_m)\} \) kyselyn negatiota vastaava järjestetty maaliklausuuli ja \(C = \{A(\bar{t}), -A_1(\bar{t}_1), \ldots, -A_n(\bar{t}_n)\} \) järjestetty ohjelmaklausuuli (ohjelman sääntö) siten, että

1. klausuellella \(G \) ja \(C \) ei ole yhteisää muuttuja ja
2. atomilla \(A(\bar{t}) \) ja valintafunction \(R \) määrittämässä literaalissa \(R(G) = -B_i(\bar{u}_i) \) esiintyvällä atomilla \(B_i(\bar{u}_i) \) on yleisin unifiointo \(\theta \).

Klausuuleihin \(G \) ja \(C \) yhdistelmäksi saadaan järjestetty maaliklausuuli

\[G' = \{-B_1(\bar{u}_1), \ldots, -B_{i-1}(\bar{u}_{i-1}), -A_1(\bar{t}_1), \ldots, -A_{n-1}(\bar{t}_{n-1}), -B_{i+1}(\bar{u}_{i+1}), \ldots, -B_m(\bar{u}_m)\} \theta. \]

Esimerkki. Tyrppillinen PROLOGin erityispiirteitä

- Tyypillissä PROLOG toteutuksessa muuttujasymbolit erotetaan muista symboleista ison alkukirjaimen perusteella.
- Literaalijoukkoon siitä järjestetyt ohjelma- ja maaliklausulit kirjoitetaan säntöön seuraavalla tapaan:

\[\{N(0)\} \sim n(0). \]

\[\{N(s(x)), -N(x)\} \sim n(s(x)) \sim n(x). \]

\[\{N(s(0)), -N(s(s(y)))\} \sim n(s(0)). \]

- Tyypillinen valintafunction valitsee maaliklausulin 1. atomin.

Esimerkki. Tyrppillinen PROLOG toteutuksessa seuraavat maaliklausulit:

1. \(n(0), n(s(s(Y))), \)
2. \(n(s(s(Y))), \)
3. \(n(s(Y)), \)
4. \(n(Y) \) ja
5. \(-tyhjä klausuuli. \)
8.2 Resoluutiloositukset

- Lähtökohtana on joukko klausuuleita S, jonka klausuuleista johdetaan uusia klausuuleita resoluutiosäännöllä.
- Johtojen ja hylykäksen määritelmät säilyvät ennallaan, mutta resoluutioskeleiden tulee täyttää resoluutiosäännön vaatimuksia.
- Tarvittaessa klausuulen muuttujat tulee nimetä uudelleen.
- Resoluutio on myös predikaattilogiikan tapauksessa virheetön ja täydellinen menettely klausuulijoukon toteutuvuuden tutkimiseen.

Väite. Klausuulijoukolle S löytyy hylykäs (eli klausuulijoukosta S on johto $C_1, ..., C_n$ tyhjälle klausuulille $C_n = \square$) $\iff S$ on toteutumaton.

Todistus. Sivutetaan.

Muiden loogisten ongelmiin ratkominen

- Resoluutioilla voidaan selvittää lauseiden pätevyyttä ja logiista ekvivalenttia sekä tutkia lauseekon logiista seuraavuuska.
- Koska Skolemointi ei säilytä logiista ekvivalenttia vaan toteutuvuuden, nämä tulee muuntaa toteutuvuusongelmiksi.

Väite. Olkoon ϕ ja ψ lauseita ja Σ lausejoukko.
1. Pätevys: $\vdash \phi \iff \text{KM}(\{ \neg \phi \})$:lle löytyy hylykäs.
2. Ekvivalent: $\phi \equiv \psi \iff \text{KM}(\{ \phi \lor \psi \})$:lle löytyy hylykäs.
3. Logiinen seuraavus: $\Sigma \vdash \phi$
 \iff klausuulijoukolle $\text{KM}(\Sigma \cup \{ \neg \phi \})$ löytyy hylykäs.

Yllä KM(Γ) tarkoittaa lauseekon Γ klausulimuotoa, mikä saadaan ottamalla yksittäisten lauseiden $\gamma \in \Gamma$ klausulimuotojen unioni.

Esimerkki. Osoitetaan predikaattilogiikan lausejoukko

$$\Sigma = \{ \forall x \exists y (P(x) \land P(y)), \forall x \forall y (P(x) \to \neg P(y)) \}$$

toteutumattomaksi, haetaan lauseille ensin klausulikesytet:

- $\forall x \exists y (P(x) \land P(y)) \to \forall x (P(x) \land P(f(x))) \to$
 $S_1 = \{ \{P(x)\}, \{P(f(x))\} \}$
- $\forall x \forall y (P(x) \to \neg P(y)) \to \forall x \forall y (\neg P(x) \lor P(y)) \to$
 $S_2 = \{ \neg P(x), \neg P(y) \}$

Hylykäs: 1. $\{P(x)\} \quad S_1$
2. $\{\neg P(z), \neg P(y)\} \quad S_2 \{x/z\}$
3. $\square \quad 1,2, \text{MGU} \{x/y, z/y\}$

$\implies S_1 \cup S_2$ on toteutumaton $\implies \Sigma$ on toteutumaton.
Esimerkki. Osoitetaan lause \(\exists x(E(x) \land K(x)) \) lausejoukon

\[
\Sigma = \{ \forall x(I(x) \rightarrow E(x)), \exists x(I(x) \land K(x)) \}
\]

loogiseksi seuraavaksi. Haetaan tarvittavat klausulimuodot:

\[
\forall x(I(x) \rightarrow E(x)) \quad \Rightarrow \quad \forall x(-I(x) \lor E(x))
\]

\[
\exists x(I(x) \land K(x)) \quad \Rightarrow \quad I(c) \land K(c)
\]

\[
-\exists x(E(x) \land K(x)) \quad \Rightarrow \quad \forall x(-E(x) \land -K(x))
\]

Kokonaisuutena saadaan sis klausulijoukko

\[
S = S_1 \cup S_2 \cup S_3 = \{-I(x), E(x), I(c), K(c), -E(x), -K(x)\}
\]

8.3 Ohjeita resoluutiotodistusten kirjoittamiseen

- Muuttujien uudelleennimeäminen on hyvä suorittaa systemaattisesti (esimerkiksi alaindekseen avulla).
- Yksittäistä klausulijoukon klausuluilla saattaa tarvita useita kertoja resoluutiotodistuksessa (jolloin muuttujien uudelleennimeäminen on välttämätöntä).
- Kirjoita yleisimmät unifioijat (MGU:t) näkyviin.
- Ellet kirjoita todistusta binääripuun muotoon, numeroi klausuluilla ja ilmoita, mistä klausuleista mikin klausuli on johdettu.
- Laske yleisimmien unifioijien kompositio selvitääksesi kyselyssä esiintyvillä muuttujilla arvot.
Esimerkki. Esitetään listat vakióen e (tyhjä lista) ja kaksipaikaisen funktiosymbolin c avulla (näin lista [1,2] saa esityksen c(1,c(2,e))).

Määriteltävät seuraavat listojen koskevat predikaatit:

1. \(K(x,e) \)
 - "listan x alkioina ovat listan y alkiot kääriteisessä järjestyksessä":
2. \(\forall x \forall y \forall z (K(x,y) \land L(y,v,z) \rightarrow K(c(x,v),z)) \)
3. \(L(y,v,z) = \text{"lista z on lista y, jonka perään on liitetty alkio v"}:
 - \(\forall x L(e,x,c(x,e)) \) ja
 - \(\forall x \forall y \forall z (L(y,v,z) \rightarrow L(c(x,y),v,c(x,z))) \).

Resoluutiotodistus:
1. \{ \neg K(c(1,c(2,e)),x_0) \} \quad P_5
2. \{ \neg K(x_1,y_1), \neg L(y_1,v_1,z_1), K(c(v_1,x_1),z_1) \} \quad P_2
3. \{ \neg K(c(2,e),y_1), \neg L(y_1,1,z_1) \} \quad 1,2,MGU \{ v_1/1, x_1/c(2,e), x_0/z_1 \}
4. \{ \neg K(x_2,y_2), \neg L(y_2,v_2,z_2), K(c(v_2,x_2),z_2) \} \quad P_2
5. \{ \neg K(e,y_2), \neg L(y_2,2,y_1), \neg L(y_1,1,z_1) \} \quad 3,4,MGU \{ v_2/2, x_2/e, z_2/y_1 \}
6. \{ K(e,e) \} \quad P_1
7. \{ \neg L(e,2,y_1), \neg L(y_1,1,z_1) \} \quad 5,6,MGU \{ y_2/e \}
8. \{ L(e,x_3,c(x_3,e)) \} \quad P_3
9. \{ \neg L(c(2,e),1,z_1) \} \quad 7,8,MGU \{ x_3/2, y_1/c(2,e) \}
10. \{ \neg L(y_4,v_4,z_4), L(c(x_4,y_4), v_4, c(x_4,z_4)) \} \quad P_4
11. \{ \neg L(e,1,z_4) \} \quad 9,10,MGU \{ x_4/2, y_4/e, v_4/1, z_1/c(2,z_4) \}
12. \{ L(e,x_5,c(x_5,e)) \} \quad P_3
13. \square \quad 11,12,MGU \{ x_5/1, z_4/c(1,e) \}

- Unifiointien kompositio: \{ v_1/1, x_1/c(2,e), x_0/c(2,c(1,e)), v_2/2, x_2/e, z_2/c(2,e), y_2/e, x_3/2, y_1/c(2,e), x_4/2, y_4/e, v_4/1, z_1/c(2,c(1,e)), x_5/1, z_4/c(1,e) \}
- Rajaus kyselyyn: \{ x_0/c(2,c(1,e)) \} (ns. vastaussubstituus).

Haluamme siis selvittää, millainen on lista [1,2] käännettynä.
8.4 Tukijoukkkostrategia

Määrittelemä. Klaussulijoukon S osajoukko T on tukijoukko (engl. set of support), jos $S - T$ on toteutuva.

- **Tukijoukkkostrategiassa** ei miloinkaan suoriteta resoluutiotä joukon $S - T$ klaussuleille keskenään.

- **Tutkimasta logiista seuraavuutta** $\Sigma \models \phi$ lausejoukko Σ (oleittamukset) on tyypillisesti toteutuva. Tällöin voidaan ajatella:

1. T muodostuu lauseesta $\neg \phi$ saatavien klaussulien joukosta ja
2. joukkoon $S - T$ kuuluvat lausejoukosta Σ saatavat klaussulit.

- Ristiriita aiheutuu siis konkreettisesti tukijoukon T klaussuleista, mikäli $\Sigma \models \phi$ (eli $\Sigma \cup \{\neg \phi\}$ on toteutumaton).

Esimerkki. Tutkitaan seuraako lause $\phi \equiv \exists (E(y) \land K(y))$ loogisesti lausejoukosta $\Sigma = \{\forall x (I(x) \rightarrow E(x)), \exists x (I(x) \land K(x))\}$.

Lausejoukosta Σ saadaan $S - T_0 = \{\{\neg I(x), E(x)\},\{I(c)\},\{K(c)\}\}$ ja lauseesta $\neg \phi$ tukijoukko $T_0 = \{\{\neg E(y), \neg K(y)\}\}$.

1. Valitaan klaussuli $C_1 = \{\neg E(y), \neg K(y)\} \in T_0$:
 - Klaussulista $\{K(c)\}$ saadaan $\{\neg E(c)\}$ (MGU y/c).
 - Klaussulista $\{\neg I(x), E(x)\}$ saadaan $\{\neg I(x), \neg K(x)\}$ (MGU y/x).

2. Valitaan $C_2 = \{\neg E(c)\} \in T_1 = \{\{\neg E(c)\},\{\neg I(x), \neg K(x)\}\}$:
 - Klaussulista $\{\neg I(x), E(x)\}$ saadaan $\{\neg I(x)\}$ (MGU x/c).

3. Valitaan $C_3 = \{\neg I(c)\} \in T_2 = \{\{\neg I(c)\},\{\neg I(x), \neg K(x)\}\}$:
 - Klaussulista $\{I(c)\}$ saadaan \square (MGU e).

\[\rightarrow S \text{ ja } \Sigma \cup \{\neg \phi\} \text{ ovat toteutumattomia, joten } \Sigma \models \phi.\]
Motivaatio

Miksi tietokoneohjelmille tulisi kirjoittaa formaaleja espessiikäsiota?
- Spesifikointiota laadittaessa joudutaan suunnittelemaan ennalta varsin tarkaan mikä ohjelmiston on tarkoitus tehdä,
- Järjestelmän toteutus voidaan verifioida eli todeta määritellynsä mukaiseksi vasta, kun spesifikatio on tehty.
- Formaalisesta spesifiointissa etuna on määritelmien yksikäsitteisyys.
- Turvallisuusristiiset järjestelmat (esim. lentokoneen ohjaus- järjestelmät) vaativat perinpohjaista määritelyä ja verifiointia.
- Hyvin määritellyn ohjelman uudelleenkäyttöön on helpompaa.
Ohjelman tilojen esittäminen struktuurina

Määritelmä. Struktuuri S on Z-struktuuri seuraavilla edellytyksillä:
(i) Struktuurin S universumina U on kokonaislukujen joukko Z.
(ii) Jokaisen kokonaisluvun (vakiosymboli tarkasteltavassa kielessä) tulkintana on kyseinen kokonaisluku itse.
(iii) Funktiosymbolien $+$ ja $*$ tulkintoja ovat yhteen-, vähennys- ja kertoaskufunktio kokonaislukujen joukossa.
(iv) Predikaattisymbolin $>$ tulkintana on suurempi kuin $-$relaatio kokonaislukujen joukossa.

Komentojen suorittamisen vaikutus tilaan

Määritelmä. Määritlemän tilansuoriteloaatio $S \rightarrow S'$ määrittelee tila S', johon päädytään tilasta S, jos ja kun komennon C suoritus päättyy.
1. Jos C on sijoitusaause $x=E$, niin tila S' on $S[x \mapsto E]$.
2. Jos C on ketjulauseke $C_1 ; C_2$, niin S' on tila, joka saavutetaan suorittamalla ensin C_1 ja sitten C_2.
3. Jos C on ehtolauseke if (B) then (C_1) else (C_2), niin S' on tila, joka saavutetaan suorittamalla C_1, jos $S \models B$, ja C_2, jos $S \not\models B$.
4. Jos C on toistolauseke while $(B) \{ C_1 \}$ ja $S \not\models B$, niin $S' = S$.
5. Jos C on toistolauseke while $(B) \{ C_1 \}$ ja $S \models B$, niin S' on tila, joka saavutetaan suorittamalla C_1; while $(B) \{ C_1 \}$.

Huomioita.
- Ohjelman suorituksen *tila* voidaan rinnastaa Z-struktuurin S.
- Kokonaislukulausekkeen E arvo tilassa S on kokonaisluku E^S.
- Boolen lauseke B on tosi tilassa $S \iff S \models B$.

Esimerkki. Tarkastellaan tilaa S, missä $x^S = 2$ ja $y^S = 6$ ja $z^S = 3$.
Lausekkeiden $(x \cdot x)$ ja $(z \cdot z)$ arvot ovat $(x \cdot x)^S = 4$ ja $(z \cdot z)^S = 9$.
Niinpä $S \models (x \cdot x < y) \& (y < z \cdot z)$, mutta $S \not\models (x \cdot y < z)$.

Esimerkki. *Tarkastellaan ohjelman*

$$y=1; z=1; \text{while}(y=x) \{ (z=z+1; y=y \cdot z) \}$$

suoritusta tilasta S, missä $x^S = 3$. Ohjelman suorituksen aikana alkutilaa päivitettää seuraavasti:

$$y \mapsto 1, z \mapsto 1, z \mapsto 2, y \mapsto 2, z \mapsto 3 \text{ ja } y \mapsto 6,$$

muuttujan y arvon on muuttujan x arvon kertoama.

Esimerkki. Ohjelman $x=1; \text{while}(x>0)\{ y=y+1 \}$ suoritus ei pääty, koska komennon $y=y+1$ toistaminen ei vaikuta ehdon toteutumiseen.
9.2 Ehtolausekkeiden ekvivalenssi

- Ohjelmointikielissä käytetään paljon ehtolausekkeita kontrolloimaan, millä ehdolla ja mitä toimintoja suoritetaan.
- Jos ehtolausekkeita muutetaan esim., optimointikäytänteissä, halutaan varmasti että toiminnat suoritetaan samoilla ehdolla.
- Ehtolausekkeiden ekvivalenssin osoittamiseen voidaan käyttää sekä lauseelogiikan että predikaattilogiikan menetelmiä.
- Jos ehtolausekkeiden evaluoinnilla on sivuaikutusen muutoksia ohjelman tilaan, pelkkä loogisen ekvivalenssin tarkastaminen ei välttämättä riitä.

Esimerkki. Tällainen sivuaikutus voi olla esim., virhetilanne, joka on aihetutun ehtojen evaluoinnista väärrässä järjestysessä.

Esimerkki. Vertaillaan kahta eri ohjelmaa:

```java
if((x>0) && (y>x)) then {
    if(x!=y) then (z=x) else (z=y)
} else (z=0)
if(x>0) then {
    if(x>y) then (z=x) else (z=y)
} else (z=0)
```

- Valitaan atomiset lauseet A = "x > 0", B = "x > y" ja C = "y > x".
- Nyt esim., sijoituslauseke z=x suoritetaan niässä ohjelmissa seuraavilla ehdolla: \(A \land \neg C \land \neg (B \land C) \) ja \(A \land B \).
- Lauseelogiikan nojalla näiden välinen ekvivalenssi on looginen seurauksena \(\neg (B \land C) \), joka on aina voimassa B:n ja C:n välillä.

Esimerkki. (Jatkoa) ekvivalenssi voidaan todeta seuraavilla taululla:

\[
\begin{align*}
T \neg(B \land C) & \quad T \neg(B \land C) \\
T \neg(A \land B) & \quad T(A \land C) \land \neg(B \land C) \\
E(A \land C) \land \neg(B \land C) & \quad E(A \land B) \\
T A & \quad T A \\
T B & \quad T B \\
E A & \quad E B \\
& \quad \text{Näiden perusteella } \neg(B \land C) \vdash (A \land B) \leftrightarrow (A \land C) \land \neg(B \land C). \\
\end{align*}
\]

Kytkenmät predikaattilogiikkaan

- Boolen lauseke B on \(\mathbb{Z} \)-pätevä (merk., \(\models \mathbb{Z} B \)) \(\iff \) S \(\models B \) kaikissa \(\mathbb{Z} \)-struktseureissa S.
- Näin lausekkeiden muuttujat saavat universaalin tulkinnan.
- Boolen lausekkeet B₁ ja B₂ ovat \(\mathbb{Z} \)-ekvivalentit (merk., B₁ \(\equiv \mathbb{Z} B₂ \)) \(\iff \) lausekkeilla on sama totuusarvo kaikissa \(\mathbb{Z} \)-struktseureissa.
- Huomaa, että \(\models B \iff \models \mathbb{Z} B₁ ja B₁ \models B₂ \iff B₁ \equiv \mathbb{Z} B₂ \), mutta käntoiseita implikatit eivät välttämättä ole voimassa.

Esimerkki. \(\models \mathbb{Z} (((x>y) \land (y>x)), mutta \(\not\models \mathbb{Z} (((x>y) \land (y>x)), koska löytyy vastamalli S, jolle U = \{0\}, x^s = y^s = 0 ja \(>^S = \{0,0\} \).

\(\iff \) relation > suhde funktioihin +, - ja * joudutaan kuvaamaan erikseen (vrt., \(\neg(B \land C) \) edellä), jos käytetään predikaattilogiikkaa.
9.3 Ohjelmien esi- ja jälkiehdot

- Tarkasteltavan ohjelmointikohdan ohjelmalla on säätöön tilatavaruus, jonka läpäkäyminen on käytännössä mahdotonta.

- Joki mahdollisuus on tarkastella Boolean lausekkeiden B määrittelemää tilaajoukkoa $\{S | S \models B\}$ ja analysoima, millaisia muutoksia annettu ohjelma näihin aiheuttaa.

- Mille tahansa ohjelmalle P voidaan asettaa esi-ja jälkiehdot B_1 ja B_2 kirjoittamalla ns. Hoare-kolmikko $[B_1] \mathcal{P} [B_2]$.

- Karkeasti ottaen ajatuksena on, että esiehdon B_1 on tarkoitus taata jälkiehdon B_2 voimaantulo ohjelman P suorituksen päättymättä.

Esimerkki. Olkoon Succ ohjelma $\text{if}(x==0)$ theen $y=1$ else $y=x+1$, jolle voidaan antaa spesiifikaatio: true Succ $y=x+1$.

Osittainen ja täysi oikeellisuus

Olkoon P ohjelma sekä B_1 ja B_2 kaksi Boolean lauseketta.

Määritelmä. Ohjelma P on **osittais oikeellinen** annettujen esi-ja jälkiehdot B_1 ja B_2 suhteen (merk. $\models P \models B_1 \models B_2$) $\iff S \models B_2$ pätee saavutettavalle tilalle S' aina kun ohjelman P suoritus aloitetaan tilasta S, missä $S \models B_1$, ja ohjelman P suoritus päätyy tilaan S'.

Esimerkki. Osittainen oikeellisuus ei edellytä suorituksen päättymistä: $\models \text{true}$ while $x!=y$ (c) $x=x$; $x=y$; $y=z$ [x==y].

Määritelmä. Ohjelma P on **täysin oikeellinen** annettujen esi-ja jälkiehdot B_1 ja B_2 suhteen (merk. $\models P \models B_1 \models B_2$) $\iff P \models B_1$ ja ohjelman P suoritus päätyy aina kun $S \models B_1$ alkutilalle S.

Huomio. Vastaavat englannin kielisät termit ovat **partial correctness** ($\models P$) ja **total correctness** ($\models P$).
Heikoimat esitettävät

- Olkoon P ohjelma $C_1; \ldots; C_n$, missä C_1, \ldots, C_n ovat järjestyksessä peräkkäin suoritettavat komennot.

- Ominaisuudella $M = \{B_0, B_1, \ldots, B_n\}$ osoittaminen voidaan pilkkoosa ongelmille: tuli löytää sopiva ehdot B_1, \ldots, B_{n-1} siten, että $M = \{B_0, B_1, \ldots, B_n\}$ on osoitettavissa kaikille $i \in \{1, \ldots, n\}$.

- Usein tällaiset ehdot voidaan löytää analysoimalla komentosekvenssien takaperin: haetaan komennolle C_i (missä i saa arvot $n, n-1, \ldots, 1$) haluttua esitettä B_1 siten, että $x = p[B_0, B_1, \ldots, B_n]$.

- Jatkossa tälläksiä todistusia kirjoitetaan sekenneisiä

Tarkastellaan seuraavaksi, millaisista todistusaskeleista tällainen sekennessi voidaan muodostaa edellä esittelyyn päättelysääntöjen nojalla.

1. Jos B on jälkienno sijoituslausekkeella $x = E$, heikoimmaksi esiteltävä

 Voimme kirjata $B(x/E) \quad \vdash_{p} \quad B(x/E) \quad x = E \quad | \quad B$,

 Esimerkki. $x > 0 \quad y = x - 1 \quad y \geq 0$.

2. Jos $x = p[B_1, B_2]$ on jo osoitettu ja B_0 on ehdon B_1 vahehven

 $x = p[B_0, B_1, C_2, B_2]$ koska $x = p[B_0, C_2]$.

 Esimerkki. $x > 0 \quad y = x - 1 \quad y \geq 0$.

3. Jos $x = p[B_1, C_1, B_2]$ ja $x = p[B_2, C_2, B_3]$ ovat jo (rekursiivisesti)

 Osoitetut jälkienno lausekkeet B_3, niin lausekseen $\text{if}(B)$ siten C_1 else C_2

 Heikoimaksi esiteltävä kirjataan $(B \& B_1) \quad | \quad (!B \& B_2)$.

 Esimerkki. $x > y \quad | \quad (x > y) \quad | \quad (x > y) \quad | \quad (x > y)$

 Esimerkki. $x > y \quad | \quad (x > y) \quad | \quad (x > y) \quad | \quad (x = x)$

 Esimerkki. $(x > y) \quad | \quad (x > y)$

 if(x > y) then (x = x) else (x = y) = x = y

9.4 Toistolausekkeiden invariantti

- Ohehmoittamien keskeisiä primitiivejä ovat toistolausekkeet, joiden

 Avulla komentoja voitaisiin ohjelman haluttua määrrä.

 $z = 0; \quad v = 0; \quad \text{while}(z = x) \quad (z = z + 1; \quad v = v + y)$

- **Ongelma:** kuinka voitaisiin osoittaa toistorakenteita säätävien

 Algoritmin toimivuus kaikissa tilanteissa?

- Toistorakenteilla halutaan tyyppilemässä todistaa *invariantti* eli

 ominaisuus, joka säilyy voimassa toistorakenteen suorituksen ajan.

Määritelmä. Toistolausekeen **while**(B) C invarianttia I on mikä

Tehansa Boolen lauseke siten, että $p[B \& I] = C$.

Huomio. Invariantti I ei välttämättä ole jatkuvasti tosi komennon C

Suorituksen aikana, mutta ehdottomasti C:n suorituksen jälkeen.
9.5 Täysi oikeellisuus

- Tieto osittaisesta oikeellisuudesta (\(\models_p [B_1] C [B_2] \)) on hyödyllinen ainoastaan, mikäli komennon \(C \) suoritus todella päättyy.

- Täydellisen oikeellisuuden (\(\models \)) osoittamiseksi joudutaan todistamaan erikseen, että komennossa \(C \) esiintyvien toistolauseiden suoritus päättyy lopulta.

- Tätä varten tarvitaan vahvemmat päättelysääntöjä.

- Missä \(E \) on sopiva kokonaislukulauseke, \(n \) on (uusi) kokonaislukumuuttuja ja \(B_1 \) on vahvemmenttu invariantti \(B_\& (0 \leq E) \).

- Niin lausekkeen \(E \) arvo pienenee jatkuvasti toistettuessa \(C \):tä.

Esimerkki. Osoitetaan edellä annetun kertolaskuohjelman Multi osittainen oikeellisuus eli \(\models_p [true] Multi \{ v=x+y \}, \)

\[[true] \{ 0 \leq 0 \} z=0 \{ 0=x+z \} \quad v=0 \{ v=x+y \} \quad (A4) \]

while(! (x==z)) {
 [v=x+y] \quad (A3)
 [v+y=(z+1)*y] \quad v=v+y \{ v=x+y \} \quad (A2)
}

[\{v=x+y\} \&\&(x==z)] \{ v=x+y \} \quad (A1)

Huomio. Todistuksessa käytetty invariantti on \(v=x+y \).

Edellä esitettyjä todistukselmaa (A1)...(A4) on merkitty ylös.

Ohjelman suoritus päättyy, jos ja vain jos \((x<0)\) on tosi.