Helsinki University of Technology Laboratory for Theoretical Computer Science Pekka Orponen (tel. 5246), Harri Haanp (tel. 5243)

T-79.1002 Introduction to Theoretical Computer Science Y (2 ECTS) Exam Thu 26 October 2006, 1-4 p.m.

Write down on each answer sheet:

- Your name, department, and student id
- The text: "T-79.1002 Introduction to Theoretical Computer Science Y 26.10.2006 "
- The total number of answer sheets you are submitting for grading
 - 1. Which of the following claims are true (T) and which are false (F)?
 - (a) Every context-free language can be described with a nondeterministic finite automaton.
 - (b) The complement of a language recognized by a deterministic finite automaton can be described as a regular expression. 2p. (c) The intersection of a context-free language and a regular language is regular.
 - 2p.
 - (d) The complement of a regular language is context-free. 2p.
 - 2. Show that each of the following languages is regular, for example by describing them as a regular expression or finite automaton:
 - (a) $\{w \in \{0,1\}^* \mid |w| \ge 2, |w| \text{ is odd}\},\$ 5p.
 - (b) $\{w \in \{0,1\}^* \mid |w| \ge 3, w \text{ starts with } 010 \text{ or ends with } 110\},\$ 5p.
 - (c) $\{w \in \{a, b, c\}^* \mid w \text{ contains neither } ab \text{ nor } cc \text{ as a substring}\}.$ 5p.
 - 3. Consider strings over the alphabet $\{0,1\}$. Let $n_0(w)$ denote the number of 0s in the string w. Let $L_1 = \{0^i 1^j \mid i > j \ge 0\}$

and

$$L_2 = \{ w \mid n_0(w) \le 3 \}.$$

Give context-free grammars that produce L_1 and $L_1 \cup L_2$.

4. Justify the claim: if language $L \subseteq \{a, b, c\}^*$ can be recognized by a finite automaton, then so can language $L' \subseteq \{a, b\}^*$, that is obtained by replacing each c in the strings of L with the string ab. 7p.

Total 40p.

10p.

2p.