Helsinki University of Technology Laboratory for Theoretical Computer Science Pekka Orponen (tel. 5246), Tommi Syrjänen (tel. 5082)

T-79.1002 Introduction to Theoretical Computer Science Y (2 ECTS) Exam Thu 9 Mar 2006, 4–7 p.m.

Write down on each answer sheet:

- Your name, department, and student id

- The text: "T-79.1002 Introduction to Theoretical Computer Science Y 9.3.2006"
- The total number of answer sheets you are submitting for grading

Note that you CANNOT use this exam to compensate for course T-79.148 in the pre-2005 study requirements!!! If you want to take an exam for this course, or the post-2005 two-period course T-79.1001, please ask for another exam sheet!!!

1. Which of the following claims are true (T) and which false (F):

(a) Any language recognised (decided) by a nondeterministic finite automaton ca bed by a context-free grammar.	n be descri- 2p.
(b) The intersection of any two context-free languages is regular.	2 <i>p</i> .
(c) The complement of any regular language is context-free.	2 <i>p</i> .
(d) The union of any two regular languages can be recognised (decided) by a d finite automaton.	eterministic 2p.
2. Show that each of the following languages is regular, by describing it either in terms of a regular expression or in terms of a finite automaton:	
(a) $\{w \in \{0,1\}^* \text{ each two 1's in } w \text{ are separated by an even number of 0's (possibly none)}\},$	
	5p.
(b) $\{w \in \{0,1\}^* \mid w \text{ contains substring 11 exactly once}\},\$	5p.
(c) $\{w \in \{0,1\}^* \mid w \text{ does not contain substring } 111\}$.	5p.

3. (a) Show that the following context-free grammar is ambiguous:

$$S \rightarrow aSb \mid aSbb \mid \epsilon$$
.

5 p.

- (b) Design an unambiguous grammar generating the same language as the grammar in part (a).
 5 p.
- 4. (a) Justify the claim: if language A over the alphabet $\Sigma = \{0, 1\}$ is regular, then so is the language $A^R = \{w^R \mid w \in A\}$. (Notation w^R denotes the reverse of string w, i.e. the string with the symbols of w written in the opposite order.) 4*p*.
 - (b) As part (a), but for context-free languages: if language $A \subseteq \{0,1\}^*$ is context-free, then so is the language A^R . 3p.

Total 40p.