Helsinki University of Technology Laboratory for Theoretical Computer Science Pekka Orponen (tel. 5246), Tommi Syrjänen (tel. 5082)

T-79.1002 Introduction to Theoretical Computer Science Y (2 ECTS) Exam Wed 14 Dec 2005, 1–4 p.m.

Write down on each answer sheet:

2.

- Your name, department, and student id

- The text: "T-79.1002 Introduction to Theoretical Computer Science Y 14.12.2005"

- The total number of answer sheets you are submitting for grading

Note that you CANNOT use this exam to compensate for course T-79.148 in the pre-2005 study requirements!!! If you want to take an exam for this course, or the post-2005 two-period course T-79.1001, please ask for another exam sheet!!!

1. Which of the following claims are true (T) and which false (F):

(a)	All languages described by regular expressions can be recognised (decided) by detenistic finite automata.	rmi- 2p.
(b)	All languages described by context-free grammars can be recognised (decided) by deterministic finite automata.	non- 2p.
(c)	The union of two regular languages is regular.	2p.
(d)	The intersection of a regular language and a context-free language is regular.	2p.
(a)	Give a regular expression that describes the language	
	$\{w \in \{0,1\}^* \mid w \text{ contains an odd number of 0's or an odd number of 1's (or both)}\}$.}

		5p.
(b)	Design a nondeterministic finite automaton with no $\epsilon\text{-transitions}$ that recognises the	lan-
	guage in part (a).	5p.
(c)	Design a deterministic finite automaton that recognises the language in part (a).	5p.

3. (a) Design a context-free grammar for the language

$$L = \{a^i b^j c^k \mid i = j \text{ or } j = k \text{ (or both)}\}.$$

5 p.

- (b) Show that the grammar you gave in part (a) is ambiguous. 5 p.
- 4. (a) Justify the claim: if languages *A* and *B* over the alphabet $\Sigma = \{0, 1\}$ are regular, then so is the language $A \cap B$. *4p.*
 - (b) Based on part (a), justify the claim: if a language L ⊆ {0,1}* is regular, then so is the language L' = {w ∈ L | |w| even}.
 3p.

Total 40p.