Helsinki University of Technology Laboratory for Theoretical Computer Science Harri Haanpää (puh. 5243)

T-79.1001 Introduction to Theoretical Computer Science T (4 cr) Exam Tue 6 March 2007 9 a.m. to noon

Write on every answer sheet:

- Name, degree programme, student number

- The text: "T-79.1001 Introduction to Theoretical Computer Science T 6.3.2007"

- The total number of answer sheets submitted for grading

- 1. Describe the following languages **both** in terms of regular expressions **and** in terms of deterministic finite automata:
 - (a) $L = \{w \in \{0,1\}^* \mid w \text{ contains } 010 \text{ as a substring}\};$ 7*p*.
 - (b) $\overline{L} = \{w \in \{0,1\}^* \mid w \text{ does not contain } 010 \text{ as a substring}\}.$ 8*p*.

Hint: It may be easiest to derive the solution to (b) from the solution to (a).

2. Consider the *properly nested* strings of parentheses and angle brackets. For example, ([]) [] and [([])] are strings of properly nested parenthesis, but ([], [), and]() [are not. More formally, the properly nested strings can be defined inductively: ε is a string of properly nested parenthesis, and if x and y are strings of properly nested parenthesis, then so are (x), [y], and xy.

(a) Design a context-free grammar that produces L .	8 p.
(b) Give the parse trees of the strings ([])[] and [([])] in your grammar.	7 p.

- 3. Consider the language $L = \{ww \mid w \in \{a, b\}^*\}$.
 - (a) Show that L is not regular. 7 p.
 - (b) Design a Turing machine that decides *L*. Give your Turing machine as a state diagram, and describe the working idea of your machine in writing. 8 *p*.
- Closure properties of language classes: Given a language *L* over an alphabet Σ, let *L^R* = {*w^R* | *w* ∈ *L*} be the language obtained by reversing each string in *L*. Here *w^R* is the reverse of *w* (for example, (*gnat*)^{*R*} = *tang*).

(a)	Show that if L is regular, then L^R is regular.	5 p.
(b)	Show that if L is context-free, then L^R is context-free.	5 p.

(c) Show that if L is recursively enumerable, then L^R is recursively enumerable. 5 p.

Total 60p.