Helsinki University of Technology Laboratory for Theoretical Computer Science Harri Haanpää (tel. 5243)

T-79.1001 Introduction to Theoretical Computer Science T (4 ECTS) Exam Thu 26 October 2006, 1–4 p.m.

Write down on each answer sheet:

- Your name, department, and student id
- The text: "T-79.1001 Introduction to Theoretical Computer Science T 26.10.2006 "
- The total number of answer sheets you are submitting for grading
 - 1. Show that each of the following languages is regular, for example by describing them as regular expressions or finite automata.

(a) $\{w \in \{0,1\}^* \mid w \ge 2, w \text{ is odd}\},\$	5 <i>p</i> .
--	--------------

- (b) $\{w \in \{0,1\}^* \mid |w| \ge 3, w \text{ starts with 010 or ends with 110}\},$ 5p.
- (c) $\{w \in \{a, b, c\}^* \mid w \text{ contains neither } ab \text{ nor } cc \text{ as a substring}\}.$ 5*p*.
- 2. Consider the language $L = \{0^i 1^j 0^k \mid j = i + k\}.$

(a)	Give a context-free grammar that produces L.	7p.
(u)	Give a context free graninar that produces <i>L</i> .	'P

- (b) Design a pushdown automaton that recognizes L. 8p.
- 3. Design a single-tape Turing machine that decides whether the input is of the form *wcw*, where $w \in \{a, b\}^*$. Present the computation of your machine with inputs *abab* and *abcab*. 15p.
- 4. Consider strings over the alphabet $\{0,1\}$. Let $n_0(w)$ denote the number of 0s in string *w*. Let $L_1 = \{0^i 1^j | i > j \ge 0\}$ and $L_2 = \{w | n_0(w) \le 3\}$. Which of the following languages are regular? Justify your answers formally.
 - (a) L_1
 - (b) *L*₂
 - (c) $L_1 \cup L_2$
 - (d) $L_1 \cap L_2$

15p.

Total 60p.