1. Show that each of the following languages is regular, for example by describing them as regular expressions or finite automata.

 (a) \(\{ w \in \{0,1\}^* \mid |w| \geq 2, |w| \text{ is odd} \} \), \hspace{1cm} 5p.

 (b) \(\{ w \in \{0,1\}^* \mid |w| \geq 3, w \text{ starts with 010 or ends with 110} \} \), \hspace{1cm} 5p.

 (c) \(\{ w \in \{a,b,c\}^* \mid w \text{ contains neither } ab \text{ nor } cc \text{ as a substring} \} \). \hspace{1cm} 5p.

2. Consider the language \(L = \{0^i1^j0^k \mid j = i+k \} \).

 (a) Give a context-free grammar that produces \(L \). \hspace{1cm} 7p.

 (b) Design a pushdown automaton that recognizes \(L \). \hspace{1cm} 8p.

3. Design a single-tape Turing machine that decides whether the input is of the form \(wcw \), where \(w \in \{a,b\}^* \). Present the computation of your machine with inputs \(abab \) and \(abcab \). \hspace{1cm} 15p.

4. Consider strings over the alphabet \(\{0,1\} \). Let \(n_0(w) \) denote the number of 0s in string \(w \). Let \(L_1 = \{0^i1^j \mid i > j \geq 0 \} \) and \(L_2 = \{ w \mid n_0(w) \leq 3 \} \). Which of the following languages are regular? Justify your answers formally.

 (a) \(L_1 \) \hspace{1cm} 15p.

 (b) \(L_2 \)

 (c) \(L_1 \cup L_2 \)

 (d) \(L_1 \cap L_2 \)