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4. Problem: Prove that the class of context-free languages is closed under unions, concate-
nations, and the Kleene star operation, i.e. if the languages L1, L2 ⊆ Σ∗ are context-free,
then so are the languages L1 ∪ L2, L1L2 and L∗

1.

Solution: Let L1 and L2 be context-free languages that are de�ned by grammars G1 =
(V1,Σ1, R1, S1) and G2 = (V2,Σ2, R2, S2). In addition we require that (V1 − Σ1) ∩ (V2 −
Σ2) = ∅. That is, the grammars may not have any common nonterminals. Since the
nonterminals may be renamed if necessary, this is not an essential limitation.

Union: Let S be a new nonterminal and G = (V1∪V2∪{S},Σ1∪Σ2, R1∪R2∪{S →
S1 | S2}, S}. Now L(G) = L(G1) ∪ L(G2) = L1 ∪ L2. This holds, since the initial
symbol S may derive only S1 or S2, and they in turn may derive only strings that
belong to the respective languages. (If the sets of nonterminals were not disjoint,
this would not hold).

Concatenation: The language L1L2 is de�ned by the following grammar:G = (V1 ∪
V2 ∪ {S},Σ1 ∪ Σ2, R1 ∪R2 ∪ {S → S1S2}, S}
Kleene star : The language L∗

1 is de�ned by the following grammar: G = (V1 ∪
{S},Σ1, R1 ∪ {S → ε|SS1}, S}

5. Problem: Prove that the class of context-free languages is not closed under intersections
and complements. (Hint: Represent the language {akbkck | k ≥ 0} as the intersection of
two context-free languages.)

Solution: Let L = {akbkck | k ≥ 0}. This language has been proven to be not context-
free. We can prove that context-free languages are not closed under intersection by �nding
two context-free languages L1 and L2 such that L = L1 ∩ L2. Languages L1 = {aibkck |
i, k ≥ 0} and L2 = {akbkci | i, k ≥ 0} ful�ll this condition.
A direct corollary is that the class of context-free languages cannot be closed under com-

plementation, either, since they are closed under union and L1 ∩ L2 = L1 ∪ L2.

Finally, we prove that L1 and L2 are context-free by presenting context-free grammars
that generate them. The language L1 is generated by G1 = ({S, A,B, a, b, c}, {a, b, c},
P1, S), where P1 = {S → AB,A → aA | ε, B → bBc | ε}. Similarily, L2 is generated by
G2 = ({S, A,B, a, b, c}, {a, b, c}, P2, S), P2 = {S → AB,A → aAb | ε, B → cB | ε}.

6. Problem: Prove that the Cartesian product N×N is countably in�nite. (Hint: Think of
the pairs (m,n) ∈ N × N as embedded in the Euclidean (x, y) plane R2. Enumerate the
pairs by diagonals parallel to the line y = −x.) Conclude from this result and the result
of Problem 3 that also the set Q of rational numbers is countably in�nite.

Solution: A set S is countably in�nite, if there exists a bijective mapping f : N → S.
By intuition, all members of the set S can be assigned a unambiguous running number.

The members (x, y) ∈ N× N of the set N× N can be assigned a number as shown in the
following �gure.
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The idea is to arrange all pairs of numbers on diagonals parallel to the line y = −x and
enumerate the lines by member one at a time, starting from the shortest one. Here the
enumeration can not be done parallel to the x-axis; when doing this all indices would be
used to enumerate only the y-axis and no pair (x, y), y > 0 would ever be reached.

The enumerating scheme abowe can be de�ned as follows:

f(x, y) = x +
x+y∑
k=1

k = x +
(x + y)(x + y + 1)
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For an example, f(3, 1) = 13, that is, the running number of pair (3, 1) is 13. The
function f(x, y) is a bijection; for every running number there exists a unambiguous pair
of numbers. Calculating a coordinate from a given index is relatively di�cult, and is
discussed in the appendix at the end of these solutions.

The set of positive rational numbers Q+ can be presented as a pair of numbers N×N by
(x, y) ≡ x

y , y 6= 0. This is a proper subset of the countably in�nite set N×N. By Problem

3, Q+ is either �nite or countably in�nite. If Q+ was �nite, there should exists some
rational number x

y , x ∈ N, y ∈ N, y 6= 0, that would have the greatest running number

n < ∞ (in the enumeration of Q). This cannot be, because using the �gure above one
could always �nd a rational number that would have a running numberu n′ > n. Hence,
we have contradiction with the assumption that Q+ is �nite. Therefore Q+ is countably
in�nite. By the same argument, the set Q−:

Q− = {(−x, y) | (x, y) ∈ Q+}

is countably in�nite. Thus, the set Q = Q+ ∪ Q− is the union of two countably in�nite
sets, and it too is countably in�nite.
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