T-79.1001 Kevit 2006
Introduction to Theoretical Computer Science (T)

Session 8

Answers to demonstration exercises

4. Problem: Prove that the class of context-free languages is closed under unions, concate-
nations, and the Kleene star operation, i.e. if the languages L1, Lo C ¥* are context-free,
then so are the languages Ly U Lo, L1 Ly and Lj.

Solution: Let L; and L, be context-free languages that are defined by grammars G, =
(Vl, 21, Rl, 51) and G2 = (‘/2, 22, Rg, SQ) In addition we require that (Vl — 21) n (Vé —
Y5) = (. That is, the grammars may not have any common nonterminals. Since the
nonterminals may be renamed if necessary, this is not an essential limitation.

Union: Let S be a new nonterminal and G = (V;UV2U{S}, X, U%s, RiURU{S —
Sy | S2},S}. Now L(G) = L(G1) U L(G2) = Ly U Ly. This holds, since the initial
symbol S may derive only S; or Ss, and they in turn may derive only strings that
belong to the respective languages. (If the sets of nonterminals were not disjoint,
this would not hold).

Concatenation: The language L1 Lo is defined by the following grammar:G = (V4 U
Vo U{S},3Z1 Uy, Ry UR U{S — 515}, S}

Kleene star: The language L7 is defined by the following grammar: G = (V; U
{S}, 21, Rl U {S — e|SSl}, S}

5. Problem: Prove that the class of context-free languages is not closed under intersections
and complements. (Hint: Represent the language {a*b*ck | k > 0} as the intersection of
two context-free languages.)

Solution: Let L = {a*b*c* | k > 0}. This language has been proven to be not context-
free. We can prove that context-free languages are not closed under intersection by finding
two context-free languages L1 and Ly such that L = Ly N Ly. Languages L = {aibkc’C |
i,k >0} and Ly = {a*b¥c’ |4,k > 0} fulfill this condition.

A direct corollary is that the class of context-free languages cannot be closed under com-

plementation, either, since they are closed under union and Ly N Ly = Ly U Ly.

Finally, we prove that L; and Ly are context-free by presenting context-free grammars
that generate them. The language L, is generated by G1 = ({S, 4, B,a,b,c},{a,b,c},
Py, S), where P, = {S — AB,A — aA | ¢,B — bBc | €}. Similarily, L, is generated by
G2 = ({S,A,B,a,b,c},{a,b,c}, P2,S), P, ={S — AB,A — aAb | e,B — ¢B | }.

6. Problem: Prove that the Cartesian product N x N is countably infinite. (Hint: Think of
the pairs (m,n) € N x N as embedded in the Euclidean (z,y) plane R2. Enumerate the
pairs by diagonals parallel to the line y = —x.) Conclude from this result and the result
of Problem 3 that also the set Q of rational numbers is countably infinite.

Solution: A set S is countably infinite, if there exists a bijective mapping f : N — S.
By intuition, all members of the set S can be assigned a unambiguous running number.

The members (z,y) € N x N of the set N x N can be assigned a number as shown in the
following figure.



The idea is to arrange all pairs of numbers on diagonals parallel to the line y = —x and
enumerate the lines by member one at a time, starting from the shortest one. Here the
enumeration can not be done parallel to the x-axis; when doing this all indices would be
used to enumerate only the y-axis and no pair (z,y),y > 0 would ever be reached.

The enumerating scheme abowe can be defined as follows:

T4y
(z+y)(z+y+1)
flz,y)=x+ k=x+

For an example, f(3,1) = 13, that is, the running number of pair (3,1) is 13. The
function f(x,y) is a bijection; for every running number there exists a unambiguous pair
of numbers. Calculating a coordinate from a given index is relatively difficult, and is
discussed in the appendix at the end of these solutions.

The set of positive rational numbers QF can be presented as a pair of numbers N x N by
(z,y) = i, y # 0. This is a proper subset of the countably infinite set N x N. By Problem

3, QT is either finite or countably infinite. If QT was finite, there should exists some
rational number %,x € Ny € N,y # 0, that would have the greatest running number
n < oo (in the enumeration of Q). This cannot be, because using the figure above one
could always find a rational number that would have a running numberu n’ > n. Hence,
we have contradiction with the assumption that Q% is finite. Therefore QT is countably

infinite. By the same argument, the set Q~:

Q" ={(-z.y) | (z,y) eQ"}

is countably infinite. Thus, the set Q = QT U Q™ is the union of two countably infinite
sets, and it too is countably infinite.



