Homework problems:

1. Convert the following grammar for certain type of list structures,
 \[
 S \rightarrow (L) \mid a \\
 L \rightarrow N \mid \varepsilon \\
 N \rightarrow S, N \mid S
 \]
 into Chomsky normal form.

2. Determine, using the CYK algorithm ("dynamic programming method", Sipser p. 241, Lewis & Papadimitriou p. 155), whether the strings \(abba\), \(bbaa\) and \(bbaab\) are generated by the grammar
 \[
 S \rightarrow AB \mid BA \mid a \mid b \\
 A \rightarrow BA \mid a \\
 B \rightarrow AB \mid b
 \]
 In the positive cases, give also the respective parse trees.

3. Design pushdown automata recognising the following languages:
 (a) \(\{w \in \{a, b\}^* \mid w = w^R\}\);
 (b) The language generated by grammar
 \[
 S \rightarrow (S) \mid S, S \mid a
 \]
 (Cf. Tutorial 6, Problem 1.)

Demonstration problems:

4. Design an algorithm for testing whether a given a context-free grammar \(G = (V, \Sigma, P, S)\), generates a nonempty language, i.e. whether any terminal string \(x \in \Sigma^*\) can be derived from the start symbol \(S\).

5. Design a pushdown automaton corresponding to the grammar \(G = (V, \Sigma, P, S)\), where
 \[
 V = \{S, (,), *, \cup, \emptyset, a, b\} \\
 \Sigma = \{(,), *, \cup, \emptyset, a, b\} \\
 P = \{S \rightarrow (SS), S \rightarrow S^*, S \rightarrow (S \cup S), \\
 S \rightarrow \emptyset, S \rightarrow a, S \rightarrow b\}
 \]

6. Design a grammar corresponding to the pushdown automaton \(M = (Q, \Sigma, \Gamma, \Delta, s, F)\), where
 \[
 Q = \{s, q, f\}, \Sigma = \{a, b\}, \Gamma = \{a, b, c\}, \ F = \{f\}, \\
 \Delta = \{(s, e, e), (q, c), ((q, a, c), (q, ac)), ((q, a, a), (q, aa)) \\
 ((q, a, b), (q, e)), ((q, b, c), (q, bc)), ((q, b, b), (q, bb)) \\
 ((q, b, a), (q, e)), ((q, e, c), (f, e))\}\}