
T-79.1001 Syksy 2006
Introduction to Theoretical Computer Science (T)
Session 11
Answers to demonstration exercises

4. Problem:

Prove, without appealing to Rice's theorem, that the following problem is undecidable:

Given a Turing machine M ; does M accept the empty string?

Solution:

We can prove that a problem is undecidable by showing that we could use its solution to
solve some other problem that we know to be undecidable. In this case we will use the
universal language U as our existing undecidable problem and reduce it to the language
Lε = {cM | ε ∈ L(M)} where cM denotes the encoding of a Turing machine M using
some suitable binary encoding.

Our proof has these steps:

(a) The universal language U = {cMcx | x ∈ L(M)} is known to be undecidable. (We
take this as given).

(b) Since U is undecidable, it is not possible to construct a total universal Turing machine
MU where L(MU) = U .1 A Turing machine is total if it halts for every possible input.

(c) We show that if we have a Turing machine Mε where L(Mε) = Lε, we can use it as
a building block in constructing an universal Turing machine Mε

U in such a way that
we can guarantee that the other parts of Mε

U are total.

(d) Since we can create a universal Turing machine Mε
U out from Mε and we know that

it is not possible to create a total UTM, we conclude that Mε may not be total so
Lε is undecidable.

Next, we examine the construction phase in detail.

Suppose that we can construct a Turing machine Mε for the language Lε (L(Mε) = Lε.
The machine Mε gets as its input a binary encoding cM of some Turing machine M and
then it tells whether M accepts the empty string or not. We treat Mε as a black box:
it can use any method to determine the answer and we are not concerned of its interior
workings.

Next, we want to create a universal Turing machine Mε
U in a way that it will use Mε to

do the hard part of the computation. A UTM gets two inputs, an encoding cM of a TM
M and an encoding cx of an input string x.

The UTM Mε
U will work in two phases:

(a) First it uses M and x to create a new Turing machine Mx. When this machine is
started, it �rst writes the string x to its tape, rewinds its read/write-head, and then
starts to simulate machine M .

(b) Next, the UTM will use Mε to check whether the new machine Mx accepts the empty
string.

In the �rst phase Mε
U will alter the encoding cM by adding |x|+1 new states for it. In the

�rst |x| states the machine will write one symbol of x to the tape and move the read/write
head to right. The last new state rewinds the tape back to the beginning, and then takes

1It is possible to construct universal Turing machines but they are not total.

1

an transition to the original initial state of M . We can implement this phase with a total
Turing machine because both cM and cx have a �nite length by Turing machine de�nition.
The machine Mx does essentially the same computation with an empty input as M does
with input x.

If the language Lε is decidable, then we can make Mε total. However, in this case Mε
U

is also total. Since this is impossible, we know that Mε may not be total and Lε is not
decidable but only semi-decidable.

5. Problem: Prove the following connections between recursive functions and languages:

(i) A language A ⊆ Σ∗ is recursive (�Turing-decidable�), if and only its characteristic
function

χA : Σ∗ → {0, 1}, χA(x) =
{

1, if x ∈ A;
0, if x /∈ A

is a recursive (�Turing-computable�) function.

(ii) A language A ⊆ Σ∗ is recursively enumerable (�semidecidable�, �Turing-recognisable�),
if and only if either A = ∅ or there exists a recursive function g : {0, 1}∗ → Σ∗ such
that

A = {g(x) | x ∈ {0, 1}∗}.

Solution: We start by de�ning �ve simple helper machines:

• 1 writes '1' to the input tape, moves the read/write head to right and stops.

• 0 writes '0' to the tape and stops.

• C empties the input tape, moves the head to the beginning of the tape and stops.

• NEXT reads the input x ∈ Σ∗ and replaces it with the lexicographic successor of x.

• Cmpi,j compares the contents of the input tapes i and j of a multi-tape Turing
machine and accepts if they are identical.

Since the machines are simple, they are not presented here.

(i) [⇒] Let A ⊆ Σ∗ be a recursive language. Then there exists a Turing machine MA:

MA = 〈Q, Σ,Γ, δ, q0, qacc, qrej〉

such that

∀w ∈ Σ∗ : w ∈ L ⇔ (q0, w) `∗
MA

(qacc, α) ja

w /∈ L ⇔ (q0, w) `∗
MA

(qrej, α)

We construct a machine M by combining MA with machines 1, 0, C as follows:

q′0

MA

C

C

1

0

If w ∈ L, then MA accepts w. After that M clears the tape and writes 1 to the tape.
Otherwise 0 is written. Since A is recursive, MA halts always so also M halts and it

computes the function χ(w) =

{
1, w ∈ A

0, w /∈ A
that is the characteristic function of A.

2

[⇐] Suppose that the function χ(w) is recursive. Then there exists a Turing machine
Mχ that computes it. We can now construct a machine M as follows:

Mχ x, x/L
1, 1/R

0, 0/R

Now M accepts w whenever χ(w) = 1 and rejects it when χ(w) = 0, so M decides
the language A and A is recursive.

(ii) If A = ∅, then trivially A ∈ RE and g(x) = 0 is its characteristic function.

If there exists a function g that ful�lls the conditions, then there exists a Turing
machine Mg that computes g. We can trivially modify it so that it becomes a 2-tape
machine M1,2

g that computes g but stores the result in the second tape instead of
the �rst. We now construct a 3-tape machine as follows:

NEXT2 M2,3
g

Cmp1,3

The machine gets its input from its �rst tape and it stays untouched for the whole
computation. In each iteration MA replaces the bit string x on the second tape by
its lexicographic successor y, computes g(y) and writes the output on the third tape.
Finally, the contents of tapes 1 and 3 are compared and if they match, the word is
accepted, otherwise the iteration proceeds into the next round.

[⇐] Consider the word w ∈ A. Suppose that a recursive function g that ful�lls the
conditions exists. Then w = g(x) for some x = x1x2 · · ·xn where n is �nite. Since
each �nite string has a �nite number of predecessors in the lexicographic order,
NEXT eventually generates x, M2,3

g generates w on the third tape and MA accepts
the word. Thus, MA recognizes the language A so A ∈ RE.

[⇒] Next, suppose that A ∈ RE−{∅}. Then there exists a Turing machine MA that
recognizes it. We now de�ne a helper machine MA,i that simulates MA for i steps.
The machine MA,i accepts x if MA accepts it using at most i steps, and rejects it
otherwise. We note that MA,i always halts.

We construct the function g with the help of MA,i. Every input x and bound
i is encoded into bit strings using the function c(x, y) = 0x10y. We de�ne that
g(c(x, y)) = x, if MA,y accepts x. We de�ne that g′ : {0, 1}∗ → {0, 1}∗ is the
function:

g′(w) =

{
x, w = 0x10y and MA,y(x) accepts
x0, otherwise ,

where x0 ∈ A. Finally, g(x) = d(g′(x)) where d is a function that maps a bit string
0x into the xth element of n Σ∗ in the lexicographic order. The value of g′ may be
computed in a �nite time since MA,y(x) always halts. Thus, g′ is recursive and so
also g is.

Note that while g always exists, it is not always possible to �nd it since in the general
case it is an undecidable problem to �nd an element x0 ∈ A that is needed for the
de�nition.

3

