Syksy 2006

4. Problem:

Prove, without appealing to Rice's theorem, that the following problem is undecidable:

Given a Turing machine M; does M accept the empty string?

Solution:

We can prove that a problem is undecidable by showing that we could use its solution to solve some other problem that we know to be undecidable. In this case we will use the *universal language* U as our existing undecidable problem and reduce it to the language $L_{\varepsilon} = \{c_M \mid \varepsilon \in L(M)\}$ where c_M denotes the encoding of a Turing machine M using some suitable binary encoding.

Our proof has these steps:

- (a) The universal language $U = \{c_M c_x \mid x \in L(M)\}$ is known to be undecidable. (We take this as given).
- (b) Since U is undecidable, it is not possible to construct a *total* universal Turing machine M_U where $L(M_U) = U$.¹ A Turing machine is total if it halts for every possible input.
- (c) We show that if we have a Turing machine M_{ε} where $L(M_{\varepsilon}) = L_{\varepsilon}$, we can use it as a building block in constructing an universal Turing machine M_U^{ε} in such a way that we can guarantee that the other parts of M_U^{ε} are total.
- (d) Since we can create a universal Turing machine M_U^{ε} out from M_{ε} and we know that it is not possible to create a total UTM, we conclude that M_{ε} may not be total so L_{ε} is undecidable.

Next, we examine the construction phase in detail.

Suppose that we can construct a Turing machine M_{ε} for the language L_{ε} $(L(M_{\varepsilon}) = L_{\varepsilon}$. The machine M_{ε} gets as its input a binary encoding c_M of some Turing machine M and then it tells whether M accepts the empty string or not. We treat M_{ε} as a black box: it can use any method to determine the answer and we are not concerned of its interior workings.

Next, we want to create a universal Turing machine M_U^{ε} in a way that it will use M_{ε} to do the hard part of the computation. A UTM gets two inputs, an encoding c_M of a TM M and an encoding c_x of an input string x.

The UTM M_U^{ε} will work in two phases:

- (a) First it uses M and x to create a new Turing machine M_x . When this machine is started, it first writes the string x to its tape, rewinds its read/write-head, and then starts to simulate machine M.
- (b) Next, the UTM will use M_{ε} to check whether the new machine M_x accepts the empty string.

In the first phase M_U^{ε} will alter the encoding c_M by adding |x|+1 new states for it. In the first |x| states the machine will write one symbol of x to the tape and move the read/write head to right. The last new state rewinds the tape back to the beginning, and then takes

¹ It is possible to construct universal Turing machines but they are not total.

an transition to the original initial state of M. We can implement this phase with a total Turing machine because both c_M and c_x have a finite length by Turing machine definition. The machine M_x does essentially the same computation with an empty input as M does with input x.

If the language L_{ε} is decidable, then we can make M_{ε} total. However, in this case M_U^{ε} is also total. Since this is impossible, we know that M_{ε} may not be total and L_{ε} is not decidable but only semi-decidable.

- 5. **Problem**: Prove the following connections between recursive functions and languages:
 - (i) A language A ⊆ Σ* is recursive ("Turing-decidable"), if and only its characteristic function

$$\chi_A : \Sigma^* \to \{0, 1\}, \qquad \chi_A(x) = \begin{cases} 1, & \text{if } x \in A; \\ 0, & \text{if } x \notin A \end{cases}$$

is a recursive ("Turing-computable") function.

(ii) A language $A \subseteq \Sigma^*$ is recursively enumerable ("semidecidable", "Turing-recognisable"), if and only if either $A = \emptyset$ or there exists a recursive function $g : \{0, 1\}^* \to \Sigma^*$ such that

$$A = \{g(x) \mid x \in \{0, 1\}^*\}.$$

Solution: We start by defining five simple helper machines:

- 1 writes '1' to the input tape, moves the read/write head to right and stops.
- 0 writes '0' to the tape and stops.
- C empties the input tape, moves the head to the beginning of the tape and stops.
- NEXT reads the input $x \in \Sigma^*$ and replaces it with the lexicographic successor of x.
- $Cmp^{i,j}$ compares the contents of the input tapes i and j of a multi-tape Turing machine and accepts if they are identical.

Since the machines are simple, they are not presented here.

(i) $[\Rightarrow]$ Let $A \subseteq \Sigma^*$ be a recursive language. Then there exists a Turing machine M_A :

$$M_A = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\rm acc}, q_{\rm rej} \rangle$$

such that

$$\begin{aligned} \forall w \in \Sigma^* : w \in L \Leftrightarrow (q_0, w) \vdash^*_{M_A} (q_{\mathrm{acc}}, \alpha) & \text{ ja} \\ w \notin L \Leftrightarrow (q_0, w) \vdash^*_{M_A} (q_{\mathrm{rej}}, \alpha) \end{aligned}$$

We construct a machine M by combining M_A with machines 1, 0, C as follows:

If $w \in L$, then M_A accepts w. After that M clears the tape and writes 1 to the tape. Otherwise 0 is written. Since A is recursive, M_A halts always so also M halts and it computes the function $\chi(w) = \begin{cases} 1, w \in A \\ 0, w \notin A \end{cases}$ that is the characteristic function of A.

 $[\Leftarrow]$ Suppose that the function $\chi(w)$ is recursive. Then there exists a Turing machine M_{χ} that computes it. We can now construct a machine M as follows:

Now M accepts w whenever $\chi(w) = 1$ and rejects it when $\chi(w) = 0$, so M decides the language A and A is recursive.

 (ii) If A = Ø, then trivially A ∈ RE and g(x) = 0 is its characteristic function. If there exists a function g that fulfills the conditions, then there exists a Turing machine M_g that computes g. We can trivially modify it so that it becomes a 2-tape machine M^{1,2}_g that computes g but stores the result in the second tape instead of the first. We now construct a 3-tape machine as follows:

The machine gets its input from its first tape and it stays untouched for the whole computation. In each iteration M_A replaces the bit string x on the second tape by its lexicographic successor y, computes g(y) and writes the output on the third tape. Finally, the contents of tapes 1 and 3 are compared and if they match, the word is accepted, otherwise the iteration proceeds into the next round.

 $[\Leftarrow]$ Consider the word $w \in A$. Suppose that a recursive function g that fulfills the conditions exists. Then w = g(x) for some $x = x_1 x_2 \cdots x_n$ where n is finite. Since each finite string has a finite number of predecessors in the lexicographic order, NEXT eventually generates x, $M_g^{2,3}$ generates w on the third tape and M_A accepts the word. Thus, M_A recognizes the language A so $A \in RE$.

 $[\Rightarrow]$ Next, suppose that $A \in RE - \{\emptyset\}$. Then there exists a Turing machine M_A that recognizes it. We now define a helper machine $M_{A,i}$ that simulates M_A for *i* steps. The machine $M_{A,i}$ accepts *x* if M_A accepts it using at most *i* steps, and rejects it otherwise. We note that $M_{A,i}$ always halts.

We construct the function g with the help of $M_{A,i}$. Every input x and bound i is encoded into bit strings using the function $c(x,y) = 0^x 10^y$. We define that g(c(x,y)) = x, if $M_{A,y}$ accepts x. We define that $g' : \{0,1\}^* \to \{0,1\}^*$ is the function:

$$g'(w) = \begin{cases} x, & w = 0^x 10^y \text{ and } M_{A,y}(x) \text{ accepts} \\ x_0, & \text{otherwise }, \end{cases}$$

where $x_0 \in A$. Finally, g(x) = d(g'(x)) where d is a function that maps a bit string 0^x into the xth element of n Σ^* in the lexicographic order. The value of g' may be computed in a finite time since $M_{A,y}(x)$ always halts. Thus, g' is recursive and so also g is.

Note that while g always exists, it is not always possible to find it since in the general case it is an undecidable problem to find an element $x_0 \in A$ that is needed for the definition.