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4. Problem: Show that pushdown automata with two stacks (rather than just one as per-
mitted by the standard de�nition) would be capable of recognizing exactly the same
languages as Turing machines.

Solution: We �rst show that a two-stack pushdown automaton can simulate a Turing
machine. The only di�culty is to �nd a way to simulate the Turing machine tape using
two stacks. This can be done using a construction that is similar to the one presented in
the �rst problem: the �rst stack holds the part of tape that is left to the read/write head
(in reversed order), and the second stack holds the symbols that are right to the head.
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The computation of the automaton can be divided into two parts:

(a) Initialization, when the automaton copies the input to stack S1 one symbol at a
time, and then moves it, again one-by-one, to stack S2. (With the exception of the
�rst symbol).

(b) Simulation, where the automaton decides its next transition by examining the top
symbol of S1. If the machine moves its head to left, the top element of S1 is moved
into S2. If it moves to the other direction, the top element of S2 is moved to S1.

A two-stack pushdown automaton that is formed using these principles simulates a given
Turing machine. The formal details are presented in an appendix.

Next we show that we can simulate a two-stack pushdown automaton using a Turing
machine. This can be done trivially using a two tape nondeterministic Turing machine
where both stacks are stored on their own tapes.

5. Problem: Extend the notion of a Turing machine by providing the possibility of a two-
way in�nite tape. Show that nevertheless such machines recognize exactly the same
languages as the standard machines whose tape is only one-way in�nite.

Solution: A Turing machine with a two-way in�nite tape works otherwise in a same way
than a standard machine except that the position of the tape start symbol (>) is not
�xed and it can move in a same way than the end symbol (<). The tape positions are
indexed by the set Z of integers where 0 denotes the initial position of >.

We can simulate such a Turing machine by a two-track one-way Turing machine. Con-
ceptually, we divide the tape into two parts: upper and lower. The upper part holds the
two-way tape cells i ≥ 0 and the lower part cells i < 0. For example, a two-way tape:
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is expressed as a one-way tape:
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In practice the construction of two tracks is done by replacing the alphabet Σ by a new
alphabet Σ′ = (Σ∪{<

′, >
′})× (Σ∪{<

′, >
′}). Each symbol of Σ′ thus denotes two symbols

of Σ. The symbols {<
′, >

′} are new symbols that denote the start and end symbols of the
original tape. So, the above example is expressed as:

> 〈a, b〉 〈b, >′〉 〈a, ε〉 〈<′, ε〉 <

We still need a way to decide which tape-half is used. The easiest way to do this is to
de�ne a mirror image state q′ for each state q. When the machine is in state q, it examines
only the upper track when it decides what move to take next (tape head is on right side
of the tape). Similarily, in state q′ it examines only the lower symbol (tape head is on the
left side). Since the lower tape is in a reversed order, all tape head moving instructions
have to be also reversed.

The formal de�nition of this construction is presented in an appendix.

6. Problem: Prove that the Cartesian product N×N is countably in�nite. (Hint: Think of
the pairs (m,n) ∈ N × N as embedded in the Euclidean (x, y) plane R2. Enumerate the
pairs by diagonals parallel to the line y = −x.) Conclude from this result and the result
of Problem 3 that also the set Q of rational numbers is countably in�nite.

Solution: A set S is countably in�nite, if there exists a bijective mapping f : N → S.
By intuition, all members of the set S can be assigned a unambiguous running number.

The members (x, y) ∈ N× N of the set N× N can be assigned a number as shown in the
following �gure.
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The idea is to arrange all pairs of numbers on diagonals parallel to the line y = −x and
enumerate the lines by member one at a time, starting from the shortest one. Here the
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enumeration can not be done parallel to the x-axis; when doing this all indices would be
used to enumerate only the y-axis and no pair (x, y), y > 0 would ever be reached.

The enumerating scheme abowe can be de�ned as follows:

f(x, y) = x +
x+y∑
k=1

k = x +
(x + y)(x + y + 1)

2

For an example, f(3, 1) = 13, that is, the running number of pair (3, 1) is 13. The
function f(x, y) is a bijection; for every running number there exists a unambiguous pair
of numbers. Calculating a coordinate from a given index is relatively di�cult, and is
discussed in the appendix at the end of these solutions.

The set of positive rational numbers Q+ can be presented as a pair of numbers N×N by
(x, y) ≡ x

y , y 6= 0. This is a proper subset of the countably in�nite set N×N. By Problem

3, Q+ is either �nite or countably in�nite. If Q+ was �nite, there should exists some
rational number x

y , x ∈ N, y ∈ N, y 6= 0, that would have the greatest running number

n < ∞ (in the enumeration of Q). This cannot be, because using the �gure above one
could always �nd a rational number that would have a running numberu n′ > n. Hence,
we have contradiction with the assumption that Q+ is �nite. Therefore Q+ is countably
in�nite. By the same argument, the set Q−:

Q− = {(−x, y) | (x, y) ∈ Q+}

is countably in�nite. Thus, the set Q = Q+ ∪ Q− is the union of two countably in�nite
sets, and it too is countably in�nite.

Appendix: the formalisation of solution 5

Let M = (Q,Σ,Γ, δ, q0, qacc, qrej) be a two-way tape Turing machine. De�ne a standard
Turing machine M ′ as follows:

M ′ =(Q′,Σ′,Γ′, δ′, q0, qacc, qrej)
Q′ =Q ∪ {q′ | q ∈ Q}
Σ′ =(Σ ∪ {<

′, >
′})× (Σ ∪ {<

′, >
′})

Γ′ =(Γ ∪ {<
′, >

′})× (Γ ∪ {<
′, >

′})

The transition function δ′ is de�ned as follows:

δ′ = {(q1, 〈a, γ〉, q2, 〈b, γ〉,∆) | (q1, a, q2, b,∆) ∈ δ, γ ∈ Γ′}
∪ {(q1, 〈σ′, γ〉, q2, 〈b, γ〉,∆) | (q1, σ, q2, b,∆) ∈ δ, γ ∈ Γ′, σ ∈ {<, >}}
∪ {(q′1, 〈γ, a〉, q′2, 〈γ, b〉,∆) | (q1, a, q2, b,∆) ∈ δ, γ ∈ Γ′}
∪ {(q′, 〈γ, a〉, qend, 〈γ, b〉,∆) | (q, a, qend, b,∆) ∈ δ, qend ∈ {qacc, qrej}, γ ∈ Γ′}
∪ {(q′1, 〈γ, σ′〉, q′2, 〈γ, b〉,∆) | (q1, σ, q2, b,∆) ∈ δ, γ ∈ Γ′, σ ∈ {<, >}}
∪ {(q, >, q′, >, R), (q′, >, q, >, R) | q ∈ Q},

where L = R, R = L, < = > and > = <.
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