T-79.1001 Syksy 2006
Introduction to Theoretical Computer Science (T)

Session 7

Answers to demonstration exercises

4. Problem: Pattern expressions are a generalisation of regular expressions used e.g. in
some text editing tools of UN*X operating systems. In addition to the usual regular
expression constructs, a pattern expression may contain string variables, including the
constraint that any two appearances of the same variable must correspond to the same
substring. Thus e.g. abXb*Xa and aX(a U b)*Y X (a U b)*Ya are pattern expressions
over the alphabet {a,b}. The first one of these describes the language {awb™wa | w €
{a,b}*,n > 0}. Prove that pattern expressions are a proper generalisation of regular
expressions, i.e. that pattern expressions can be used to describe also some nonregular
languages.

Answer:

Consider the pattern expression X X. This expression denotes the language L = {zz |
z € {a,b}*. Suppose that L is regular. Then, the pumping lemma for regular languages
holds for it:

Lemma: If L is a regular language, then there exists an integer n > 0 such that for each
string x € n it holds that if |x| > n, then x = uwvw where (1) luv| < n, (2) |v| > 0, and
(3) uwvkw € L for every k € N.

Let us examine the string x = za"ba™ € L. As |z| = 2n + 2 > 0, there has to be a
partition of z into three parts such that all three conditions of the lemma are satisfied.

All partitions that satisfy (1) are of the form:
u=a'
v=a’
w = a"" T pa"p
where i + j < n. From (2) we know that j > 0. Next we examine if we can find some
values for ¢ and j such that (3) also holds for k& = 0:

ww = uw = a’a"~ D pa™b = a? I ba"b .

Since j > 0, p— j < p so uv’w ¢ L for any choice of i and j. Thus, L is not regular.

Since we can define L using pattern expressions, we now know that pattern expressions
are strictly more expressive than regular expressions.

5. Problem: Prove that the language L = {w | w contains equally many a’s as b’s } is not
regular.

Solution:

6. Problem: Design an algorithm for testing whether a given a context-free grammar G =
(V,X, P, S), generates a nonempty language, i.e. whether any terminal string € ¥* can
be derived from the start symbol S.

Lemma: If L is a regular language, then there exists an integer n > 0 such that for each
string x € n 4t holds that if |x| > n, then x = wvw where (1) |uv| < n, (2) |v| > 0, and
(3) wv*w € L for every k € N.

Consider x = a"b™ € L. If L is regular, then we can divide z into three parts u, v, and w
such that all three conditions of the lemma hold. All partitions that satisfy (1) are of the



form:

i

u=a
v =a’
w = anf(iJrj)bn

where i + j < n. From (2) we know that j > 0. Next we examine if we can find some
values for ¢ and j such that (3) also holds for k = 0:

u’w = vw = a'a”" b = aP IV ¢ L .
Since uv’w ¢ L for any i and j, L is not regular.

Solution:

The following procedure ?GENERATESNONEMPTYLANGUAGE(G) takes a context-free gram-
mar G as its input and it returns the value true, if the language L(G) is not empty.

?GENERATESNONEMPTYLANGUAGE(G = (V, X, P, S): context-free grammar)

T—X%
repeat |V — X| times

for each A — X;--- X, € P

ifALTAX, - X, €Tk
T —TuU{A4}

ifSeT

return true
else

return false

The basic idea is to start from the set 7' = ¥ of terminal symbols and then check whether
it is possible to “retreat” to S using productions of P reversed. At each step a nonterminal
A is added to the set T if there exists some rule for A such that all symbols in the right
side belong to T'. These steps are repeated |V — X| times.

To see why |V — 3| steps are enough, let us consider the word z € L(G) such that z has
the smallest parse tree of all words in L(G). If z has has a derivation of the form:
S —* uAy —* wAzy —* uvwzy

where u,v,w,z,y € ¥*, then also z’ = uwy can be derived using the rules of the gram-
mar!. In that case, the parse tree of 2’ is smaller than that of z contradicting our earlier
assumption. Now we see that in the minimal parse tree of z it is not possible to have two
occurrences of a nonterminal A in a single branch so we have to iterate over the set T’
only as many times as there are nonterminals in the grammar.

Consider the grammar G:

S — BAB | ABA

A — aAS | bBa
B—bBS|c
The computation of T' proceeds as follows:
To = {a,b,c}
Ty = {a,b,c, B} (B—c¢)
Ty = {a,b,c, A, B} (A — bBa)
Ts = {a,b,c, A, B,C, S} (S — BAB,S — ABA)

Since |V — X| = 3, the algorithm terminates and 7" = T35 so L(G) is not empty. The
smallest parse-tree of a z € L(G) is:

ICompare this with the pumping theorem of context-free languages.



Appendix: Chomsky normal form and CYK-algorithm

Let’s change the grammar:

P={S—aAS|bBS|¢
A — aAA|D,
B — bBB | a}

into Chomsky normal form, and check with CYK-algorithm whether words abb and abba
belong to language L(G).

A grammar is in Chomsky normal form, if the following conditions are met;:

1. Only the initial symbol S can generate an empty string.

2. The initial symbol S does not occur in the right hand side of any rule.

3. All rules are of form A — BC or A — a (where A, B ja C are nonterminals and a a
terminal symbol), except for rule S — ¢ (if such a rule exists).

The grammar is put into the normal form in phases.

1. Initial symbol is removed from right side of the rules.
Because there are rules S — aAS and S — bBS in the grammar, let’s add a new

starting symbol S’ and a rule S’ — S. The resulting set of rules is
S — S,
S — aAS |bBS | e
A — aAA|D,
B —bBB|a

2. e-productions are removed.
Because in the Chomsky normal form only the initial symbol S’ may generate ¢,
other ¢ rules must be removed from the grammar. We start by computing the set of
erasable nonterminals: NULL:

NULL, ={S} (S — e
NULL; ={5, 5"} (8" — 8)
NULL, ={S, $'} = NULL

Next, the rules A — X5 --- X, are replaced by a set of rules

X, X; ¢ NULL

A— ai---ag, where o; =
X, or g, X; € NULL

Finally, we remove all rules of form A — ¢ (except for rule S’ — ¢). As the result
we get rule set?:

2To be exact, now we should add a new initial symbol S’ and rules S” — ¢|S’, but in this case we can use
S’ as the starting symbol without problems.



S — Sle

S — aAS |aA|bBS | bB
A — aAA|b,

B —bBB|a

3. Unit productions are removed.
Next we remove from the grammar all rules of form A — B where both A and B
are nonterminals.
First, we compute sets F'(A) for all A e V — 3:

F(A)=F(B)=F(S)=0

F(8') = {5}
Nonterminal B belongs to set F'(A) exactly when we can derive B from A using only
unit productions:

Rule A — B is replaced by {A — w | 3C € F(B)U{B}: C — w € P}. As the
result we get a set of rules

S"— aAS |aA|bBS|bB|e
S — aAS |aA|bBS | bB
A — aAA|D,

B —bBB|a

4. Too long productions are removed.
In the last phase we add into the grammar a new nonterminal C, and a rule C, — o

for all 0 € ¥ and divide all rules A — w (|w| > 2) into a chain of rules, all of which
consist of exactly two symbols.
The Chomsky normal form for the given grammar is the following set of rules:
S' = CuSy | CaA | CuSy | CyB |
S, — AS
S, — BS
S — C,S1 | CLA | CpS2 | CyB
S1 — AS
S — BS
A— Cu A1 |b
A — AA
B—C,Bi]a
B, — BB
C,—a
Cy, —b
Using CYK-algorithm we can check whether word z = x; - - - x,, belongs to the language
defined by grammar G. During the progress of algorithm we compute nonterminal sets
N; ;. Set N;; includes all those nonterminals, which can be used to derive substring
x; - -x;. We can apply dynamic programming for computing the sets:
N;i={A|(A— ;)€ P}
Niitr={A|3B,CeV —-%Ys.t. (A— BC) e P and
Jj:i<j<i+ks.eBeN;; ANCENjt1,itk}



Let’s look at the grammar we got above and word abba. First we compute sets IV; ;, i < 4:

7 —
Ni itk 1:a | 2:0b | 3:0b | 4:a |
k| 0 abba abba abba abba
{B,Ca} {A,Cb} {B,Ca} {Aa Cb}

On each square of the array it has been denoted, which substring the square corresponds
to.

Next we compute Nj 2. Now the only possible j = 1, so we look at sets N1 = {B,C,}
ja Na2 = {A,Cp}. The only rules of form A — BC, B € Ny; and C € Ny, are: {S' —
CoA, S — CyA}, s0 Ny o = {5, S}. The same way we can compute sets No 3 = {A;} and
N3 4 ={5’, S}, so the second row of the array is

1 —
Ni itk 1:a 2:b 3:0b 4:a
0 abba abba abba abba
k l {B;Ca} {Avcb} {Bvca} {Aa Cb}
1 abba abba abba
{s". 8} | {4} | {55}

At square N 3 we have to look at two alternatives,

j:l = Nl_’l:{Ca,B} ]:2 = N172:{SI,S}
Ny ={A:} N33 ={Cy, A}

The nonterminal set corresponding to case j = 1is {A} (A — C,A4;) and that of case
j=21is (), so Ny 3 ={A}. We can continue the same way and and get the final table

7 —

Ni itk 1:a 2:0b 3:0b 4:a

0 abba abba abba abba
{B,C.} {A4,Cp} | {B,C.} | {A,Ch}
1 abba abba abba
k| {5, 5% {Ap | {95}
2 abba abba
{A} {51, 51}
3 abba
{57, S, A1}

Since S’ € Ny 4, abba € L(G). But, S’ ¢ N1 3, so abb ¢ L(G).



