T-79.1001 Syksy 2006

Introduction to Theoretical Computer Science (T) Session 7

Answers to demonstration exercises

4. **Problem**: Pattern expressions are a generalisation of regular expressions used e.g. in some text editing tools of UN*X operating systems. In addition to the usual regular expression constructs, a pattern expression may contain string variables, including the constraint that any two appearances of the same variable must correspond to the same substring. Thus e.g. $abXb^*Xa$ and $aX(a \cup b)^*YX(a \cup b)^*Ya$ are pattern expressions over the alphabet $\{a,b\}$. The first one of these describes the language $\{awb^nwa \mid w \in abb \}$ $\{a,b\}^*, n \geq 0\}$. Prove that pattern expressions are a proper generalisation of regular expressions, i.e. that pattern expressions can be used to describe also some nonregular languages.

Answer:

Consider the pattern expression XX. This expression denotes the language $L = \{zz \mid$ $z \in \{a,b\}^*$. Suppose that L is regular. Then, the pumping lemma for regular languages holds for it:

Lemma: If L is a regular language, then there exists an integer n > 0 such that for each string $x \in n$ it holds that if $|x| \ge n$, then x = uvw where (1) $|uv| \le n$, (2) |v| > 0, and (3) $uv^k w \in L$ for every $k \in \mathbb{N}$.

Let us examine the string $x = xa^nba^n \in L$. As |x| = 2n + 2 > 0, there has to be a partition of x into three parts such that all three conditions of the lemma are satisfied.

All partitions that satisfy (1) are of the form:

$$u = a^{i}$$

$$v = a^{j}$$

$$w = a^{n-(i+j)}ba^{n}b$$

where $i+j \leq n$. From (2) we know that j>0. Next we examine if we can find some values for i and j such that (3) also holds for k=0:

$$uv^{0}w = uw = a^{i}a^{n-(i+j)}ba^{n}b = a^{p-j}ba^{n}b$$
.

Since j > 0, p - j < p so $uv^0w \notin L$ for any choice of i and j. Thus, L is not regular.

Since we can define L using pattern expressions, we now know that pattern expressions are strictly more expressive than regular expressions.

5. **Problem:** Prove that the language $L = \{w \mid w \text{ contains equally many } a$'s as b's $\}$ is not regular.

Solution:

6. **Problem**: Design an algorithm for testing whether a given a context-free grammar G = (V, Σ, P, S) , generates a nonempty language, i.e. whether any terminal string $x \in \Sigma^*$ can be derived from the start symbol S.

Lemma: If L is a regular language, then there exists an integer n > 0 such that for each string $x \in n$ it holds that if |x| > n, then x = uvw where (1) |uv| < n, (2) |v| > 0, and (3) $uv^kw \in L$ for every $k \in \mathbb{N}$.

Consider $x = a^n b^n \in L$. If L is regular, then we can divide x into three parts u, v, and w such that all three conditions of the lemma hold. All partitions that satisfy (1) are of the form:

$$u = a^{i}$$

$$v = a^{j}$$

$$w = a^{n-(i+j)}b^{n}$$

where $i + j \le n$. From (2) we know that j > 0. Next we examine if we can find some values for i and j such that (3) also holds for k = 0:

$$uv^0w = uw = a^ia^{n-(i+j)}ba^nb = a^{p-j}b^n \notin L$$
.

Since $uv^0w \notin L$ for any i and j, L is not regular.

Solution:

The following procedure ?GENERATESNONEMPTYLANGUAGE(G) takes a context-free grammar G as its input and it returns the value true, if the language L(G) is not empty.

?GeneratesNonemptyLanguage($G = (V, \Sigma, P, S)$: context-free grammar)

```
T \leftarrow \Sigma
repeat |V - \Sigma| times
for each A \rightarrow X_1 \cdots X_k \in P
if A \notin T \land X_1 \cdots X_k \in T^k
T \leftarrow T \cup \{A\}
if S \in T
return true
else
return false
```

The basic idea is to start from the set $T=\Sigma$ of terminal symbols and then check whether it is possible to "retreat" to S using productions of P reversed. At each step a nonterminal A is added to the set T if there exists some rule for A such that all symbols in the right side belong to T. These steps are repeated $|V-\Sigma|$ times.

To see why $|V - \Sigma|$ steps are enough, let us consider the word $z \in L(G)$ such that z has the smallest parse tree of all words in L(G). If z has has a derivation of the form:

$$S \to^* uAy \to^* uvAxy \to^* uvwxy$$

where $u, v, w, x, y \in \Sigma^*$, then also z' = uwy can be derived using the rules of the grammar¹. In that case, the parse tree of z' is smaller than that of z contradicting our earlier assumption. Now we see that in the minimal parse tree of z it is not possible to have two occurrences of a nonterminal A in a single branch so we have to iterate over the set T only as many times as there are nonterminals in the grammar.

Consider the grammar G:

$$\begin{split} S &\rightarrow BAB \mid ABA \\ A &\rightarrow aAS \mid bBa \\ B &\rightarrow bBS \mid c \end{split}$$

The computation of T proceeds as follows:

$$T_0 = \{a, b, c\}$$

 $T_1 = \{a, b, c, B\}$ $(B \to c)$
 $T_2 = \{a, b, c, A, B\}$ $(A \to bBa)$
 $T_3 = \{a, b, c, A, B, C, S\}$ $(S \to BAB, S \to ABA)$

Since $|V - \Sigma| = 3$, the algorithm terminates and $T = T_3$ so L(G) is not empty. The smallest parse-tree of a $z \in L(G)$ is:

¹Compare this with the pumping theorem of context-free languages.

Appendix: Chomsky normal form and CYK-algorithm

Let's change the grammar:

$$P = \{S \rightarrow aAS \mid bBS \mid \varepsilon$$
$$A \rightarrow aAA \mid b,$$
$$B \rightarrow bBB \mid a\}$$

into Chomsky normal form, and check with CYK-algorithm whether words abb and abba belong to language L(G).

A grammar is in Chomsky normal form, if the following conditions are met:

- 1. Only the initial symbol S can generate an empty string.
- 2. The initial symbol S does not occur in the right hand side of any rule.
- 3. All rules are of form $A \to BC$ or $A \to a$ (where A, B ja C are nonterminals and a a terminal symbol), except for rule $S \to \varepsilon$ (if such a rule exists).

The grammar is put into the normal form in phases.

1. Initial symbol is removed from right side of the rules.

Because there are rules $S \to aAS$ and $S \to bBS$ in the grammar, let's add a new starting symbol S' and a rule $S' \to S$. The resulting set of rules is

$$S' \to S,$$

$$S \to aAS \mid bBS \mid \varepsilon$$

$$A \to aAA \mid b,$$

$$B \to bBB \mid a$$

2. ε -productions are removed.

Because in the Chomsky normal form only the initial symbol S' may generate ε , other ε rules must be removed from the grammar. We start by computing the set of erasable nonterminals: NULL:

$$\begin{aligned} & \text{NULL}_0 = \! \{S\} \\ & \text{NULL}_1 = \! \{S, S'\} \\ & \text{NULL}_2 = \! \{S, S'\} = \text{NULL} \end{aligned} \tag{$S \rightarrow \varepsilon$}$$

Next, the rules $A \to X_1 \cdots X_n$ are replaced by a set of rules

$$A \to \alpha_1 \cdots \alpha_2$$
, where $\alpha_i = \begin{cases} X_i, X_i \notin \text{NULL} \\ X_i \text{ or } \varepsilon, X_i \in \text{NULL} \end{cases}$

Finally, we remove all rules of form $A \to \varepsilon$ (except for rule $S' \to \varepsilon$). As the result we get rule set²:

²To be exact, now we should add a new initial symbol S'' and rules $S'' \to \varepsilon | S'$, but in this case we can use S' as the starting symbol without problems.

$$S' \rightarrow S \mid \varepsilon$$

$$S \rightarrow aAS \mid aA \mid bBS \mid bB$$

$$A \rightarrow aAA \mid b,$$

$$B \rightarrow bBB \mid a$$

3. Unit productions are removed.

Next we remove from the grammar all rules of form $A \to B$ where both A and B are nonterminals.

First, we compute sets F(A) for all $A \in V - \Sigma$:

$$F(A) = F(B) = F(S) = \emptyset$$

$$F(S') = \{S\}$$

Nonterminal B belongs to set F(A) exactly when we can derive B from A using only unit productions:

Rule $A \to B$ is replaced by $\{A \to w \mid \exists C \in F(B) \cup \{B\} : C \to w \in P\}$. As the result we get a set of rules

$$S' \rightarrow aAS \mid aA \mid bBS \mid bB \mid \varepsilon$$

$$S \rightarrow aAS \mid aA \mid bBS \mid bB$$

$$A \rightarrow aAA \mid b,$$

$$B \rightarrow bBB \mid a$$

4. Too long productions are removed.

In the last phase we add into the grammar a new nonterminal C_{σ} and a rule $C_{\sigma} \to \sigma$ for all $\sigma \in \Sigma$ and divide all rules $A \to w$ (|w| > 2) into a chain of rules, all of which consist of exactly two symbols.

The Chomsky normal form for the given grammar is the following set of rules:

$$S' \rightarrow C_a S'_1 \mid C_a A \mid C_b S'_2 \mid C_b B \mid \varepsilon$$

$$S'_1 \rightarrow AS$$

$$S'_2 \rightarrow BS$$

$$S \rightarrow C_a S_1 \mid C_a A \mid C_b S_2 \mid C_b B$$

$$S_1 \rightarrow AS$$

$$S_2 \rightarrow BS$$

$$A \rightarrow C_a A_1 \mid b$$

$$A_1 \rightarrow AA$$

$$B \rightarrow C_a B_1 \mid a$$

$$B_1 \rightarrow BB$$

$$C_a \rightarrow a$$

$$C_b \rightarrow b$$

Using CYK-algorithm we can check whether word $x = x_1 \cdots x_n$ belongs to the language defined by grammar G. During the progress of algorithm we compute nonterminal sets $N_{i,j}$. Set $N_{i,j}$ includes all those nonterminals, which can be used to derive substring $x_i \cdots x_j$. We can apply dynamic programming for computing the sets:

$$\begin{split} N_{i,i} &= \{A \mid (A \rightarrow x_i) \in P\} \\ N_{i,i+k} &= \{A \mid \exists B, C \in V - \Sigma \text{ s. t. } (A \rightarrow BC) \in P \text{ and} \\ &\exists j: i \leq j < i+k \text{ s. e } B \in N_{i,j} \land C \in N_{j+1,i+k}\} \end{split}$$

Let's look at the grammar we got above and word abba. First we compute sets $N_{i,i}$, $i \leq 4$:

$$k \downarrow \begin{array}{c|cccc} & & & i \rightarrow & \\ N_{i,i+k} & 1:a & 2:b & 3:b & 4:a \\ \hline 0 & \underline{a}bba & a\underline{b}ba & ab\underline{b}a & abb\underline{a} \\ \{B,C_a\} & \{A,C_b\} & \{B,C_a\} & \{A,C_b\} \end{array}$$

On each square of the array it has been denoted, which substring the square corresponds to.

Next we compute $N_{1,2}$. Now the only possible j=1, so we look at sets $N_{1,1}=\{B,C_a\}$ ja $N_{2,2}=\{A,C_b\}$. The only rules of form $A\to BC$, $B\in N_{1,1}$ and $C\in N_{2,2}$, are: $\{S'\to C_aA,S\to C_aA\}$, so $N_{1,2}=\{S',S\}$. The same way we can compute sets $N_{2,3}=\{A_1\}$ and $N_{3,4}=\{S',S\}$, so the second row of the array is

			$i \rightarrow$		
	$N_{i,i+k}$	1:a	2:b	3:b	4:a
	0	$\underline{a}bba$	$a\underline{b}ba$	$ab\underline{b}a$	$abb\underline{a}$
$k\downarrow$		$\{B, C_a\}$	$\{A, C_b\}$	$\{B, C_a\}$	$\{A, C_b\}$
	1	$\underline{ab}ba$	$a\underline{bb}a$	$ab\underline{ba}$	
		$\{S',S\}$	$\{A_1\}$	$\{S',S\}$	

At square $N_{1,3}$ we have to look at two alternatives,

$$j=1 \Rightarrow N_{1,1} = \{C_a, B\}$$
 $j=2 \Rightarrow N_{1,2} = \{S', S\}$ $N_{2,3} = \{A_1\}$ $N_{3,3} = \{C_b, A\}$

The nonterminal set corresponding to case j=1 is $\{A\}$ $(A \to C_a A_1)$ and that of case j=2 is \emptyset , so $N_{1,3}=\{A\}$. We can continue the same way and and get the final table

			$i \rightarrow$		
	$N_{i,i+k}$	1:a	2:b	3:b	4:a
•	0	$\underline{a}bba$	$a\underline{b}ba$	$ab\underline{b}a$	$abb\underline{a}$
		$\{B, C_a\}$	$\{A, C_b\}$	$\{B, C_a\}$	$\{A, C_b\}$
	1	$\underline{ab}ba$	$a\underline{bb}a$	$ab\underline{ba}$	
$k\downarrow$		$\{S',S\}$	$\{A_1\}$	$\{S',S\}$	
	2	$\underline{abb}a$	$a\underline{bba}$		
		$\{A\}$	$\{S_1', S_1\}$		
	3	\underline{abba}			
,		$\{S', S, A_1\}$			

Since $S' \in N_{1,4}$, $abba \in L(G)$. But, $S' \notin N_{1,3}$, so $abb \notin L(G)$.