T-79.1001 Syksy 2006
Introduction to Theoretical Computer Science (T)

Session 6

Answers to demonstration exercises

4. Problem: Construct a context-free grammar for the language {w € {a,b}* | w has as many as as bs}.

Solution: There are several different ways of designing a grammar for this language. The
simplest answer is the ambiguous grammar:

S — aSbS | bSaS | e .

The first rule of the grammar expresses the condition: “If the string starts with an a, then
at some point of the string there has to be a corresponding b. Between these two symbols
there may be arbitrary balanced strings.”

For example, the string abab has two parse trees:

TN, T
A B =7 SN
| |

9 9 9 9

— W0
— W0

If we want to have an unambiguous grammar for the language, we have to ensure that
the first a is associated with the first possible b:

S — aAS |bBS | ¢
A= adb|b
B —bBb|a

Now abab has only one parse tree:

//\
e

S
|
b A
|

N,

5. Problem: Prove that the following context-free grammar is ambiguous:

S — ifbthen S
S — if bthen Selse S
S — s

Design an unambiguous grammar that is equivalent to the grammar, i.e. one that generates
the same language.

[y

Solution: A context-free grammar is ambiguous if there exists a word w € L(G) such
that w has at least two different parse trees. The simplest word for the given grammar
that has this property is:

if b then if b then s else s.

Its two parse trees are:

| |

Usually we want to associate an else-branch to the closest preceeding if-statement. In
this case the former tree corresponds to this practice.

We define a grammar G as follows:

G=(V,%,P,S)
V ={S,B,U,s,b,if, then, else}
Y = {s,b,if, then, else}
P={S—-B|U
B — if b then B else B |s
U — if b then S | if b then B else U}

Here the nonterminal B is used to derive balanced programs where each if-statement has
both then- and else-branches. The nonterminal U derives those if-statements that do
not have an else-branch.

6. Problem: Design a recursive-descent (top-down) parser for the grammar from Problem

6/6.
Solution: The following C-program implements a top-down parser for the following
grammar:

c—S5|S;C

S — a | begin C end | for n times do S
This grammar is a simplified form of the one in problem 6.6. The difference is that all
different numbers are replaced by a new terminal symbol n that denotes a number.

The most important functions of the program are:

e C(), SO — implement the rules of the program.

e lex() — read the next lexeme from the input, and store it in a global variable
current_tok.

e expect(int token) — tries to read the lexeme token from input. Gives an error
message if it fails.

e consume_token() — mark the current lexeme used. This is necessary because some-
times we have to have a one-token lookahead before we know what rule we must

apply.

In practice, the programming language parsers are implemented using lez and yacc tools!.
Of these, lex generates a finite automaton-based lexical analyser from identifying lex-
emes that have been defined using regular expression, and yacc constructs a pushdown
automaton-based parser for a given context-free grammar.

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

/* Define the alphabet */

enum TOKEN { DO, FOR, END, BEGIN, TIMES, 0P, SC, NUMBER, ERROR };

const char* tokens[] = { "do", "for", "end", "begin", "times", "a",
", U"NUMBER", NULL };

/* A global variable holding the current token */
int current_tok = ERROR;

/* Maximum length of a token */
#define TOKEN_LEN 128

/* declare functions corresponding to nonterminals */
void S(void);
void C(void);

int lex(void);

void consume_token(void);
void error(char *st);
void expect(int token);

void C(void)

{
SO;
lex();
if (current_tok == SC) {
consume_token() ;
cO;
printf("C => S ; C\n");
} else {
printf("C => S\n");
}
}

void S(void)
{

10r some of their derivatives, like flez or bison.

lex();

switch (current_tok) {

case 0P:
consume_token() ;
printf("S => a\n");
break;

case BEGIN:
consume_token() ;
CcO;
expect (END) ;
printf("S => begin C end\n");
break;

case FOR:
consume_token() ;
expect (NUMBER) ;
expect (TIMES) ;
expect (D0) ;
SO;
printf ("S => for N times do S\n");
break;

default:
error ("Parse error");

}

}

/* int lex(void) returns the next token of the input. */
int lex(void)
{

static char token_text[TOKEN_LEN];

int pos = 0, ¢, i, next_token = ERROR;

/* Is there an existing token already? */
if (current_tok != ERROR)
return current_tok;

/* skip whitespace */
do {
c = getchar();
} while (c != EOF && isspace(c));
if (c !'= EOF) ungetc(c, stdin);

/* read token x/
c = getchar();
while (c != EOF && c != ’;’ && !'isspace(c) && pos < TOKEN_LEN) {
token_text[pos++] = c;
c = getchar();
}
if (c == ;") {
if (pos == 0) /* semicolon as token */
next_token = SC;
else { /* trailing semicolon, leave it for future */
ungetc(’;’, stdin);
}
}

token_text[pos] = ’\0’; /* trailing zero */

/* identify token */
if (isdigit(token_text[0])) { /* number? */
next_token = NUMBER;
} else { /* not a number */
for (i = DO; i < NUMBER; i++) {
if (!strcmp(tokens[i], token_text)) {
next_token = i;
break;
}
}
}
current_tok = next_token;
return next_token;

}

void consume_token(void)

{
current_tok = ERROR;

}

void error(char *st)
{
printf(st);
exit(1);
}

/* try to read a ’token’ from input */
void expect(int token)

{
int next_tok = lex();
if (next_tok == token) {
consume_token() ;
return;
} else
error ("Parse error");
}
int main(void)
{
int i;
CO;
return 0;
}

