T-79.1001/2 Syksy 2006
Introduction to Theoretical Computer Science (T/Y)

Session 5

Answers to demonstration exercises

4. Problem: Prove that the class of context-free languages is closed under unions, concate-
nations, and the Kleene star operation, i.e. if the languages L1, Ly C ¥* are context-free,
then so are the languages Ly U Lo, L1 Lo and Lj.

Solution: Let L; and Lo be context-free languages that are defined by grammars G; =
(‘/1, ¥, Ry, Sl) and Gy = (‘/2, Yo, R, SQ) In addition we require that (‘/1 — 21) N (‘/2 —
o) = 0. That is, the grammars may not have any common nonterminals. Since the
nonterminals may be renamed if necessary, this is not an essential limitation.

Union: Let S be a new nonterminal and G = (V; UV, U{S}, X1 U%s, RiUR2U{S —
Sy | S2},S}. Now L(G) = L(G1) U L(G2) = Ly U Ly. This holds, since the initial
symbol S may derive only S; or So, and they in turn may derive only strings that
belong to the respective languages. (If the sets of nonterminals were not disjoint,
this would not hold).

Concatenation: The language L L is defined by the following grammar:G = (V3 U
V2 @] {S}, 21 @] EQ, Rl @] RQ @] {S — S1S2}, S}

Kleene star: The language L7 is defined by the following grammar: G = (V3 U
{S}, Y1, R U {S — €|S;S’1}, S}

5. Problem: Design a context-free grammar describing the syntax of simple “programs” of
the following form: a program consists of nested for loops, compound statements enclosed
by begin-end pairs and elementary operations a. Thus, a “program” in this language looks
something like this:

a;
for 3 times do
begin
for 5 times do a;
a; a
end.

For simplicity, you may assume that the loop counters are always integer constants in the
range 0,..., 9.

Solution: The context-free grammars of programming languages are most often defined
so that the alphabet consists of all syntactic elements (lexemes) that occur in the language.
In this case numbers, a, and reserved words are lexemes. We divide the parsing of a
program into two parts:

(a) The program text is transformed into a string of lexemes using a finite state automa-
ton;

(b) The parse tree of the lexeme string is constructed.

The given grammar can be formalized in many ways, this is one possible interpretation:

G =(V,%, P,C)
V ={C, S, N,begin, do, end, for, times, 0,1,2,3,4,5,6,7,8,9,;, a}
Y. ={begin, do, end, for, times, 0,1,2,3,4,5,6,7,8,9,;,a}

Here the nonterminal S denotes a statement, C' a compound statement, and N a number.
The rules of the grammar are defined as follows:

P={C—-5|5;C
S — a | begin C end | for N times do S
N—-0]1]2]|3|4|5|6]|7|8]9}

For example, the program in the problem text has the following parse tree:

for N times do S

6. Problem: In the modern WWW-page description language XML designers can con-
struct their own “data type definitions” (abbr. DTD), which are essentially context-free
grammars describing the structure of the text or other data displayed on the page. Ac-
quiant yourself with the notation used in this XML/DTD description language and give
a context-free grammar corresponding to the following XML/DTD description:

<!DOCTYPE Book [
<!ELEMENT Book (Title, Chapter+)>
<V'ATTLIST Book Author CDATA #REQUIRED>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Chapter (#PCDATA)>
<!ATTLIST Chapter id ID #REQUIRED>

1>

Solution:

The DTD-description defines the structure for a book. There are two kinds of things in
the definition: elements and attributes. The idea is that the book itself consists of the
elements and attributes add some meta-information to the elements.

In general, it is not possible to express the semantics of the attributes using only context-
free grammars and we need stronger attribute grammars for them. However, we can
capture the attribute syntax with the grammar.

First, we consider the only the structure the elements. The first element definition

<!ELEMENT Book (Title, Chapter+)>

tells us that a book contains a title and a sequence of chapters. The ‘+’-sign tells us that
there has to be at least one chapter. The next line:

<!ELEMENT Title (#PCDATA)>

tells us that a title is a sequence of character data. We will abstract the data away
here, and define an alphabet symbol data to denote any possible data string. In a real
implementation we would use a lexer to identify the data blocks so that the parser of the
grammar could work on the abstracted level.

Finally, the line:
<!ELEMENT Chapter (#PCDATA)>

tells us that a chapter is again character data.

With these definitions we can define the book structure with the following grammar:!

Book — Title Chapters
Title — data
Chapters — Chapter Chapters | Chapter
Chapter — data

Now we extend this grammar to coincide with the XML syntax. A syntactic element A
starts with an opening tag <A> and ends with the corresponding closing tag . When
we add these to the grammar, we get:

Book — (Book) Title Chapters (/Book)
Title — (Title) data (/Title)
Chapters — Chapter Chapters | Chapter
Chapter — (Chapter) data (/Chapter)

The syntax for attributes in XML is that we add them inside the opening tag. An attribute
consists of a name-value pair name = value:

Book — (Book BookAttributes) Title Chapters (/Book)
Title — (Title) data (/Title)
Chapters — Chapter Chapters | Chapter
Chapter — (Chapter ChapterAttributes) data (/Chapter)
BookAttributes — author = data
ChapterAttributes — id = data

IThe symbols written with italics are non-terminals while those in bold are terminals.

