
T-79.1001/2 Autumn 2006
Introduction to Theoretical Computer Science T/Y
Tutorial 1, 18 to 20 September
Problems

Remember to enroll for the course using the TOPI registration system by 27
September. For bookkeeping reasons, registration is compulsory, even if you
were not intending to attend the lectures or the tutorial sessions.

Homework problems:

1. Let Σ = {a, b}. Give some examples of strings from each of the following
languages (at least three strings per language):

(a) {w ∈ Σ∗ | w the number of a’s in w is even and the number of b’s is divisible of three};
(b) {a2nb3m | n > m ≥ 0};
(c) {uvuv | u, v ∈ Σ∗};
(d) {w ∈ Σ∗ | ∃u, v ∈ Σ∗ s.t. w = uu = vvv}.

2. (a) Let A = {a, b, c, d}, and define a relation R ⊆ A× A as follows:

R = {(a, d), (b, b), (c, a), (d, b), (d, c)}.

Draw the graphs corresponding to the following relations:

(a) R, (b) R−1, (c) R ◦R, (d) R−1 −R.

Are some of these relations actually functions?
(b) List all the equivalence relations (partitions) on the set {1, 2, 3}.

3. Verify by induction the correctness of the formula:

13 + 23 + 33 + · · ·+ n3 =
n2 (n + 1)2
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Demonstration problems:

4. Define a relation ∼ on the set N× N by the rule:

(m, n) ∼ (p, q) ⇔ m + n = p + q.

Prove that this is an equivalence relation, and describe intuitively (“geometri-
cally”) the equivalence classes it determines.

5. Prove by induction that if X is a finite set of cardinality n = |X|, then its power
set P(X) is of cardinality |P(X)| = 2n.

6. Prove by induction that every partial order defined on a finite set S contains at
least one minimal element. Furthermore, provide examples showing that the
minimal element is not necessarily unique (i.e. there can be more than one),
and that in an infinite set S the claim does not necessarily hold.


