T-79.1001/2 Syksy 2005
Introduction to Theoretical Computer Science (T/Y)

Session 3

Answers to demonstration exercises

4. Problem: Formulate the model of a simple coffee machine presented in class (lecture
notes p. 15) precisely according to the mathematical definition of a finite automaton
(Definition 2.1). What is the formal language recognized by this automaton?

Solution: The problem was to give formal representation to the finite automaton given
below:

Formally, a deterministic state machine (finite automaton) is a tuple M = (Q, %, 4, qo, F),
where () is finite set of states, X finite alphabet, ¢ function @ x ¥ — @, g9 € K initial
state and F' C @ set of accepting states.

In the Coffee Machine the parts are defined as follows:

Q = {0.00,0.10,0.20,0.30, 0.40, >0.40}
¥ = {10c, 20c}

0 = {0.00}

F = {0.40, >0.40}

The easiest way to show the transition function § is a table.
q | 6(g,10c) | (g, 20c)

0.00 0.10 0.20
0.10 0.20 0.30
0.20 0.30 0.50

0.30 0.40 >0.40
0.40 | >0.40 >0.40

A configuration ¢ € @ x X* of a finite automaton contains the current state and input.
The automaton reads input one symbol at a time and then moves to a new state according
to the symbol and current state. If the automaton is in an accepting state when the word
ends, the word is accepted. Otherwise the word is rejected. The language L(M) accepted
by a finite automaton M is the set of all accepted words. For the automaton in question
it is:

L(M)={z1z2...2, | x; € X forall 1 <i<nand in2400}
i=1

So the machine accepts all the strings in which the sum of given coins is 40 ¢ or more.
Let us see through a few inputs and how the machines operates with them.

e w = 0.10c 0.10c 0.20c:

(0.00,0.10¢ 0.10¢ 0.20c) k5, (0.10,0.10¢ 0.20c)
Faz (0.20,0.20¢) Fpy (0.40,€)

Because 0.40 € F the word is accepted. Here the F,; means that machine M proceeds
one step.

o w = 0.20c 0.10c:
(0.00,0.20c 0.10¢) Fp/ (0.20,0.10¢) Fpy (0.30,¢)

Because 0.30 ¢ F, the word is rejected.
e w = 0.20c 0.20c 0.20c:

(0.00,0.20c 0.20c 0.20¢) 3, (>0.40,)

Word is accepted. Marking -3, denotes that machine M proceeds zero or more steps.

1. Show that if a language L C {a,b}* is recognized by some finite automaton, then so is
the language LY = {w® | w € L}. (The notation w? means the reverse of string w, cf.
problem 2/2.)

2. Let M = (Q,%,0,q0, F) be a finite automaton that recognizes L (that is, L = L(M)).
We use it to form an automaton M':

M/ = {Q V) {qé}’zaélaqéa {(JO}
0" = {(ai,a,q5) | 0(q5,) = ¢}
U {(Q6a€an) | q; € F}a

where ¢ ¢ Q.

Intuitively this definition means that we get an automaton for L by reversing all transi-
tions of M and by adding a new initial state that has empty transitions to all final states
of M. The new automaton has only one final state, the original initial state.

6. Problem: Show that if languages A and B over the alphabet ¥ = {a,b} are recognized
by some finite automata, then so are the languages A =¥* — A, AUB, and AN B.

Solution: Let A, B C ¥* be languages that can be recognized by finite automata. We
now show that A, AUB, and AN B can also be recognized by finite automata by showing
how such automata can be constructed.

A: Let Ma = (Q, X, 6, qo, F) be a deterministic automaton® that recognizes A (L(M,) =
A). We define an automaton Mz as follows:
MA = (anv(saquQiF) .

1M 4 necessarily exists since any nondeterministic finite automaton can be transformed into an equivalent
deterministic one.

AU B:

Automaton M ; works otherwise just as M4, but its accecpting states are exchanged
with its rejecting states. Thus, M ; accepts precisely those strings that M rejects,
and rejects those that M4 accepts, so L(Mj3) = A.

For example, consider an automaton that recognizes the language:
A={weX*| wis of the form azxb, where z € ¥*} .

All strings that start with an a and end with a b are in L. The following two automata
recognize languages A and A:

MA:

Note that this construction works only if M, is deterministic. Try to find a counter
example for the nondeterministic case.
Let My = (Qa,%,04,84,Fa) and Mp = (QB,%,05,s5, Fg) be finite automata
that recognize languages A and B. We suppose that the state sets are distinct, that
is, Qa4 N Qp = (. This is not a serious limitation since the states of one of the
automata can be renamed if necessary.

We construct a nondeterministic finite automaton M 4, as follows:

MAUB = (Q3256783F) B}

where

Q=QaUQpU{s}
F=F4UFpg
0=04UdpU{(s,¢,84),(s,6,8p)} -

We construct M anp by combining the automata M4 and Mp. The state s is a new
initial state and from there is a nondeterministic e-transition to initial states of M4
and Mp.

If string € A, M4up accepts it by first making a nondeterministic transition to
sa, and then doing the same sequence of transitions that M, would have done.
Similarily, if € B, the first transition is to sp.

For example, consider the automaton M, that was presented above and a new
automaton Mp that recognizes the language:

B = {w € ¥* | w has a substring bb} .

MB: a b a,b
9, p Y
&0

The language A U B can be recognized by the following automaton:

MAuB:

Often also a new final state f and transitions {(f’,e, f) | f' € Fa U Fp} are added
to Maup - In this case F = {f}.

AN B: This claim is a corollary of the two previous constructions, since
ANB=AUB .

Let us examine again the above automata M4 and Mp construct Manp using the
above DeMorgan rule.

MA: MB: a b avb
D, .,
Q10—
a
Mjzus

B a 96
Before M ;5 can be complemented, it has to be determinised (the following au-
tomaton is minimal, details of minimization are left in appendix):

.
My 5t

{63,602} {as,96} {a2,q7}

We get the desired automaton by exchanging the accepting and rejecting states:

MAﬂB:

a,b GO O COQa
QS;Qr} {Q47Q6} {Q27Q7

We could also define the intersection of two automata directly, using a method that
is analogous to the solution for the next exercise.

Appendix: minimizing an automaton

Using the determinising algorithm we can transform the automaton M 5, 5 (of exercise 5)
into the following form:

Now we want to find the minimal deterministic automaton that recognizes the same

. . . . 0
language. One algorithm is to define an equivalence relation = on the set of states and
refine it step-by-step until we reach the desired relation =.

In the first phase of the algorithm we remove all unreachable states. Since in this case all
states are reachable, nothing has to be done.

Next, we construct the first equivalence partition such that all accepting states are in one
class and all rejecting states in another:

0-equivalence:

Class | State a b
I A c@ | B
B G | H(
C Cc (@ | D(I)
D C(I) | E(IT)
F F(I) | E(IT)
G G | B(I)
H HO | H(O
II E F (@) | E(IT)

We see from the table that from the class I states D and F' the b-transition leads to a
state in class I1, while for all other class I states the same transition leads to a class I
state. So we separate the two distinct states into their own class:

1-equivalence:

Class | State a b
I A C (I) B (1)
B G (I) H (I)
C C (I) | D (IIm)
G G () B (I)
H | HQ) | H(®I)
I E F (1) | E (II)
I D | C(@ | E@
F | F | E D)

This time states C' and F' do not fit in their classes and they have to be separated. This
procedure is continued until all classes are consistent:

2-equivalence: 3-equivalence:
Class | State a b Class | State a b
I A cC(Iv) | B (O I A C (IV) | B (VI)
B G (D) H (I II E F (V) | £
G G (I) B (I) IT1 D C(IV) | E 1)
H H (I) H (I) v C C (IV) | D (II0)
IT E F (V) | E1) \% F F (V) | E1)
I11 D C(IV) | E(II) VI B G (VD) | H (V])
v C C (IV) | D (I1I) G G (VI) | B (VI)
\Y% F F (V) | E1I) H H (VD) | H (V)

All classes are now consistent so we can construct an automaton whose states are the
equivalence classes. The minimized automaton is shown as a state diagram in the solution
for exercise 5.

As a term, k-equivalence means that all states in a equivalence class treat all inputs that
are at most k& symbols long in the same way; either they all accept the input or they all
reject it.

