Introduction to Theoretical Computer Science (T/Y) Session 1

Answers to demonstration exercises

4 **Problem**: Prove that the following de Morgan formulas hold for all sets $A, B \subseteq U$:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \qquad \overline{A \cap B} = \overline{A} \cup \overline{B}$$

Answer: Two sets are equal when they have the same elements. Let us first examine the set $\overline{A \cup B}$. Let $a \in \overline{A \cup B}$. Then, $a \notin A \cup B$. By the definition of union this means that $a \notin A$ and $a \notin B$, so $a \in \overline{A}$ and $a \in \overline{B}$. This means that $a \in \overline{A} \cap \overline{B}$. Since every step in the proof preserves equivalence, the proof applies also for the other direction.

Next, consider $a \in \overline{A \cap B}$. Then, $a \notin A \cap B$ so $a \notin A$ or $a \notin B$. Now $a \in \overline{A}$ or $a \in \overline{B}$ so by definition of the union $a \in \overline{A} \cup \overline{B}$.

5. **Problem**: Define a relation \sim on the set $\mathbb{N} \times \mathbb{N}$ by the rule:

$$(m,n) \sim (p,q) \quad \Leftrightarrow \quad m+n=p+q.$$

Prove that this is an equivalence relation, and describe intuitively ("geometrically") the equivalence classes it determines.

Solution: The relation $\backsim \subseteq (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$ is defined in the following way:

$$(m,n) \backsim (p,q) \Leftrightarrow m+n=p+q$$

In other words, two pairs are equivalent when their sums are the same.

A relation is an equivalence relation when it is symmetric, transitive and reflexive.

i) The relation \backsim is symmetric, if $(m,n)\backsim (p,q)$ always when $(p,q)\backsim (m,n)$. Because

$$m+n=p+q \Leftrightarrow p+q=m+n,$$

((p,q),(m,n)) is always in the relation when ((m,n),(p,q)) is. Thus the relation is symmetric.

ii) The relation \backsim is reflexive, if for all $(m,n) \in \mathbb{N}$ holds that $(m,n) \backsim (m,n)$. Since

$$m+n=m+n$$
,

the condition is fulfilled.

iii) The relation \backsim is transitive, if always when $(m,n)\backsim (p,q)$ and $(p,q)\backsim (k,l)$, also $(m,n)\backsim (k,l)$.

Given

$$m+n=p+q \wedge p+q=k+l,$$

then

$$m+n=p+q=k+l \Rightarrow m+n=k+l$$
,

and thus the relation is also transitive.

Because all three conditions hold, \backsim is an equivalence relation. Below, the first elements of the relation as a graph.

From the figure it can be seen that the equivalence classes defined by the relation correspond with the lines that are parallel to the line y = -x.

6. **Problem**:Prove by induction that if X is a finite set of cardinality n = |X|, then its power set $\mathcal{P}(X)$ is of cardinality $|\mathcal{P}(X)| = 2^n$.

Solution: Base case: $X = \emptyset$. Then $\mathcal{P}(\emptyset) = \{\emptyset\}$ and $|\mathcal{P}(\emptyset)| = 1 = 2^0$.

Induction hypothesis: we assume there exists a $k \in \mathbb{N}$ such that formula holds for all $n \leq k$.

Inductive step: let |X| = k + 1. Denote $X = Y \cup \{x\}$. By the induction hypothesis $|\mathcal{P}(Y)| = 2^k$. The set $\mathcal{P}(X)$ contains all elements of $\mathcal{P}(Y)$ and the union of the elements of $\mathcal{P}(Y)$ with $\{x\}$. Thus we get $|\mathcal{P}(X)| = 2 \cdot 2^k = 2^{k+1}$.